Solveeit Logo

Question

Question: \[ {\text{Consider the following statements in respect of the function }}f(x) = {x^3} - 1, \\\ x...

x[1,1] I. f(x) is increasing in [1,1] IIf(x) has no root in (1,1]. Which of the statements given above is/are correct? A. only I B. only II C. Both I and II D. Neither I nor II  x \in [ - 1,1] \\\ {\text{I}}{\text{. }}f(x){\text{ is increasing in }}[ - 1,1] \\\ {\text{II}}f'(x){\text{ has no root in (}} - 1,1]. \\\ {\text{Which of the statements given above is/are correct?}} \\\ {\text{A}}{\text{. only I}} \\\ {\text{B}}{\text{. only II}} \\\ {\text{C}}{\text{. Both I and II}} \\\ {\text{D}}{\text{. Neither I nor II}} \\\
Explanation

Solution

Solution: -  To check a function either it is increasing or decreasing we have to double differentiate the function and check the function in their domain either it is increasing or decreasing in this question our function is f(x)=x31  so let’s find the first derivative f(x)=3x2 Now the second derivative is f(x)=6x , we check the function for x[1,1] here f(x)[6,6]  the function f(x) is increasing . II. To find the root of f(x) we have to equate f(x)=0. 3x2=0 x=0  there is one root of f(x) in ( - 1,1]. Statement I is correct and II is incorrect  Answer is A. Note: - To check a function either it is increasing or decreasing we have to differentiate the function  when first derivative is always positive in the given domain then it is strictly increasing.   {\text{Solution: - }} \\\ {\text{To check a function either it is increasing or decreasing we have to double differentiate the function}} \\\ {\text{and check the function in their domain either it is increasing or decreasing}} \\\ {\text{in this question our function is }}f(x) = {x^3} - 1 \\\ {\text{ so let's find the first derivative }}f'(x) = 3{x^2} \\\ {\text{Now the second derivative is }}f''(x) = 6x{\text{ , we check the function for }}x \in [ - 1,1] \\\ {\text{here }}f''(x) \in [ - 6,6]{\text{ }}\therefore {\text{ the function }}f(x){\text{ is increasing }}{\text{.}} \\\ {\text{II}}{\text{. To find the root of }}f'(x){\text{ we have to equate }}f'(x) = 0. \\\ \Rightarrow 3{x^2} = 0{\text{ }} \Rightarrow x = 0{\text{ }} \\\ {\text{there is one root of }}f'(x){\text{ in ( - 1,1]}}{\text{.}} \\\ \therefore {\text{Statement I is correct and II is incorrect }} \\\ {\text{Answer is A}}{\text{.}} \\\ {\text{Note: - To check a function either it is increasing or decreasing we have to differentiate the function}} \\\ {\text{ when first derivative is always positive in the given domain then it is strictly increasing}}{\text{.}} \\\ {\text{ }} \\\