Solveeit Logo

Question

Question: \[\text{50 mL }\] of \[\text{0}\text{.2 M }\] ammonia solution is treated with \[\text{25 mL }\]of\[...

50 mL \text{50 mL } of 0.2 M \text{0}\text{.2 M } ammonia solution is treated with 25 mL \text{25 mL }of0.2 M HCl \text{0}\text{.2 M HCl }. If pKb\text{p}{{\text{K}}_{\text{b}}} of ammonia solution is 4.75, the pH \text{ pH } of the mixture will be:
(A) 3.75
(B) 9.25
(C) 8.25
(D) 4.75

Explanation

Solution

To solve this question, we need to have an idea about the number of moles present in ammonia and hydrochloric acid. Once we know the number of moles, we can now find the concentration. For a mixture of solution, the concentration of conjugate acid and weak base is always equal.

Complete step by step answer:
Let us first write the equation of the reaction that is mentioned in the question. So it is:
HCl (aq) + NH3 (aq)  NH4+ (aq) + Cl (aq)\text{HCl (aq) + N}{{\text{H}}_{\text{3}}}\text{ (aq) }\xrightarrow{{}}\text{ N}{{\text{H}}_{\text{4}}}^{\text{+}}\text{ (aq) + C}{{\text{l}}^{-}}\text{ (aq)}

Let us calculate the number of moles of ammonia and hydrochloric acid.
The number of moles of NH3\text{N}{{\text{H}}_{\text{3}}} is,
No. of moles of NH3 = 50 !!×!! 0.21000 = 0.01 mol\text{No}\text{. of moles of N}{{\text{H}}_{\text{3}}}\text{ = 50 }\\!\\!\times\\!\\!\text{ }\dfrac{\text{0}\text{.2}}{\text{1000}}\text{ = 0}\text{.01 mol}
The number of moles of HCl \text{HCl } is,
No.of moles of HCl = 25 !!×!! 0.21000 = 0.005 mol \text{No}\text{.of moles of HCl = 25 }\\!\\!\times\\!\\!\text{ }\dfrac{\text{0}\text{.2}}{\text{1000}}\text{ = 0}\text{.005 mol }

Here, the moles of HCl \text{HCl } is less than that of the moles of NH3\text{N}{{\text{H}}_{\text{3}}} therefore HCl \text{HCl } is a limiting reagent. The amount of HCl \text{HCl } decides the amount of product formed.
Then the number of moles of NH3\text{N}{{\text{H}}_{\text{3}}} reacting completely is equal to,No.of moles of NH3 reacted completely = 0.01 - 0.005 = 0.005 mol\text{No}\text{.of moles of N}{{\text{H}}_{\text{3}}}\text{ reacted completely = 0}\text{.01 - 0}\text{.005 = 0}\text{.005 mol}
So the total volume of the solution will be equal to the sum of the volume of ammonia andHCl \text{HCl }.
Total volume (V) = 50 + 25 = 75 ml\text{Total volume (V) = }50\text{ + }25\text{ }=\text{ 75 ml}
So now we have to find the concentration. We know that,
Concentration = nV=0.005×1000 mL75 L = 0.07 mol L-1\text{Concentration = }\dfrac{\text{n}}{\text{V}}=\dfrac{\text{0}\text{.005}\times 1000\text{ mL}}{75\text{ L}}\text{ = 0}\text{.07 mol }{{\text{L}}^{\text{-1}}}
Now we have to find the value of  pKb\text{ p}{{\text{K}}_{\text{b}}}.

& \text{p}{{\text{K}}_{\text{b}}}\text{ = -log (}{{\text{K}}_{\text{b}}}) \\\ & \text{4}\text{.75 = log (}{{\text{K}}_{\text{b}}}) \\\ & {{10}^{-4.75}}=\text{ }{{\text{K}}_{\text{b}}} \\\ & \therefore {{\text{K}}_{\text{b}}}\text{ =1}\text{.8 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{-\text{5}}} \\\ \end{aligned}$$ Now we know that Henderson –Hasselbach equation given as, $\text{pOH = p}{{\text{K}}_{\text{b}}}\text{ + log }\dfrac{\left[ \text{conjugate acid} \right]}{\left[ \text{weak base} \right]}\text{ }$ But keeping in mind the question, we have to consider the fact that there are equal concentrations of conjugate acid and weak base. Since the concentrations of conjugate acid and weak base are equal, The Henderson equation becomes, $\text{pOH = p}{{\text{K}}_{\text{b}}}\text{ }$ We have considered the amount to be 0 while performing the calculations. Now we have to find the value of$$\text{ pOH}$$. Let us substitute the values to get the value of$$\text{ pOH }$$. $\text{pOH = - log 1}\text{.8 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{-\text{5}}}\text{ = p}{{\text{K}}_{\text{b}}}\text{= 4}\text{.74}$ So the value of pH is, $\text{ pH = 14}-\text{pOH = 14 - 4}\text{.74 = 9}\text{.25 }$ Therefore, the value of $\text{pH}$ is 9.25. **So, the correct answer is “Option B”.** **Note:** We should be having an idea about the concept of conjugate acid and a weak base. By conjugate acid, we mean a compound which is formed by the reception of a proton or as we know ${{\text{H}}^{\text{+}}}$ by a base. A weak base is defined to be a chemical base that does not ionize completely in an aqueous solution.