Solveeit Logo

Question

Question: \({{\text{5}}^{{\text{2n + 2}}}}{\text{ - 24n - 25}}\) is divisible by \(576\) for all n ∈ N by usin...

52n + 2 - 24n - 25{{\text{5}}^{{\text{2n + 2}}}}{\text{ - 24n - 25}} is divisible by 576576 for all n ∈ N by using the principle of mathematical induction.
A. True
B. False

Explanation

Solution

According to the principle of mathematical induction law, if the statement is true for n=k where k is a positive integer, then it should be true for n=k+1k + 1 also. So in the given question, first we will prove that the statement is true for n=k by first putting n=1,2,...1,2,... and then k. All the numbers obtained by putting the value of n will be multiple of 576576. Then we will solve the same statement for n=k+1k + 1and if it also gives a multiple of 576576then it is true for n=k+1k + 1.

Complete step-by-step answer:
We have to find if 52n + 2 - 24n - 25{{\text{5}}^{{\text{2n + 2}}}}{\text{ - 24n - 25}} is divisible by 576576 for all n ∈ N using the principle of mathematical induction.
Let us assume that P(n) = 52n + 2 - 24n - 25{{\text{5}}^{{\text{2n + 2}}}}{\text{ - 24n - 25}}
Now on putting n=11, we get-
P(1)=52+22425\Rightarrow {\text{P}}\left( 1 \right) = {5^{2 + 2}} - 24 - 25
On solving, we get-
P(1)=5449\Rightarrow {\text{P}}\left( 1 \right) = {5^4} - 49
On simplifying, we get-
P(1)=62549=576\Rightarrow {\text{P}}\left( 1 \right) = 625 - 49 = 576
So it will be divisible by 576576.
Now on putting n=22, we get-
P(1)=52×2+2(24×2)25\Rightarrow {\text{P}}\left( 1 \right) = {5^{2 \times 2 + 2}} - \left( {24 \times 2} \right) - 25
On solving, we get-
P(1)=564825\Rightarrow {\text{P}}\left( 1 \right) = {5^6} - 48 - 25
On simplifying further we get,
P(1)=1562573=15552=576×27\Rightarrow {\text{P}}\left( 1 \right) = 15625 - 73 = 15552 = 576 \times 27
Hence it is also divisible by 576576.
Let P(n) is true for n=k then we can write-
P(k) = 52k + 2 - 24k - 25\Rightarrow {\text{P(k) = }}{{\text{5}}^{{\text{2k + 2}}}}{\text{ - 24k - 25}}
On simplifying we get,
P(k) = 52k+2 - 24k - 25 = 576λ\Rightarrow {\text{P(k) = }}{{\text{5}}^{{\text{2k}}}}^{ + 2}{\text{ - 24k - 25 = 576}}\lambda --- (i)
Now let n=k+1k + 1then we get-
P(k + 1) = 52(k + 1) + 2 - 24(k + 1) - 25\Rightarrow {\text{P(k + 1) = }}{{\text{5}}^{{\text{2}}\left( {{\text{k + 1}}} \right){\text{ + 2}}}}{\text{ - 24}}\left( {{\text{k + 1}}} \right){\text{ - 25}}
On simplifying we get,
P(k + 1) = 52k + 2.52 - 24k - 24 - 25\Rightarrow {\text{P(k + 1) = }}{{\text{5}}^{{\text{2k + 2}}}}{\text{.}}{{\text{5}}^2}{\text{ - 24k - 24 - 25}}
On substituting the value of 52k+2{5^{2k + 2}} from eq. (i) in the above equation, we get-
P(k + 1) = (576λ + 24k + 25)52 - 24k - 24 - 25\Rightarrow {\text{P(k + 1) = }}\left( {{\text{576}}\lambda {\text{ + 24k + 25}}} \right){{\text{5}}^2}{\text{ - 24k - 24 - 25}}
On simplifying the above equation, we get-
P(k + 1) = 25×576λ + 576k - 576\Rightarrow {\text{P(k + 1) = 25}} \times {\text{576}}\lambda {\text{ + 576k - 576}}
On taking 576576 common, we get-
P(k + 1) = 576(25λ + k - 1)\Rightarrow {\text{P(k + 1) = 576}}\left( {{\text{25}}\lambda {\text{ + k - 1}}} \right)
So we can also write it as-
P(k + 1) = 576ν\Rightarrow {\text{P(k + 1) = 576}}\nu where ν\nu indicates the multiple of 576576
Hence the obtained number is divisible by 576576so the statement is also true for n=k+1k + 1
So we can say it is true for all n ∈ N.
Hence the correct answer is A.

Note: Here the student may make a mistake if they directly assume that P(n) is true for n=k for the given statement. It is necessary to prove that P(1){\text{P}}\left( 1 \right) is true for the given statement, only then can we prove that P(n){\text{P}}\left( {\text{n}} \right) is also true for n=k. Here is P(1){\text{P}}\left( 1 \right) s not true for the given statement then the statement would be false. So first we have to check whether P(1){\text{P}}\left( 1 \right) is true or not.