Solveeit Logo

Question

Question: \[\text{10g}\] of a mixture of \(\text{BaO}\)and \(\text{CaO}\) requires \[\text{100c}{{\text{m}}^{\...

10g\text{10g} of a mixture of BaO\text{BaO}and CaO\text{CaO} requires 100cm3\text{100c}{{\text{m}}^{\text{3}}} 2.5M HCl\text{2}\text{.5M HCl} to react completely. The percentage of calcium oxide in the mixture is approximate: (Given: molar mass ofBaO = 153\text{BaO = 153})
A) 55.10/055.1{\scriptstyle{}^{0}/{}_{0}}
B) 47.40/047.4{\scriptstyle{}^{0}/{}_{0}}
C) 52.60/052.6{\scriptstyle{}^{0}/{}_{0}}
D)44.90/044.9{\scriptstyle{}^{0}/{}_{0}}

Explanation

Solution

To solve this type of question consider that at the equivalence weight of acid is always equal to the base after the reaction. Thus the amount of CaO\text{CaO} and BaO\text{BaO} reacting is equal to the amount acid required for complete reaction. Use the molarity relation to find out the equivalent masses of solution Equivalents of !! !! CaO !! !! +Equivalents of !! !! BaO !! !! = !! !! Equivalents of !! !! HCl\text{Equivalents of }\\!\\!~\\!\\!\text{ CaO }\\!\\!~\\!\\!\text{ +Equivalents of }\\!\\!~\\!\\!\text{ BaO }\\!\\!~\\!\\!\text{ = }\\!\\!~\\!\\!\text{ Equivalents of }\\!\\!~\\!\\!\text{ HCl}

Complete answer:
Let the mass of CaO\text{CaO} reacting from the mixture of CaO+BaO\text{CaO+BaO} being the x gram\text{x gram}
Since we know that the total 10 gram\text{10 gram} of the mixture undergoes the reaction with HCl\text{HCl} , therefore, the amount of CaO\text{CaO} undergoes the mixture =(10-x) gram\text{=(10-x) gram}
To find out the percentage of oxide in the mixture, let's first start with calculating the equivalent of CaO\text{CaO} and BaO\text{BaO}

  1. Equivalent mass ofBaO\text{BaO}:
    The mass of CaO\text{CaO} x gx\text{ g}
    Therefore, the mass of BaO=(10x) g\text{BaO=}(10-x)\text{ g}
    Equivalence mass of BaO =molar mass of BaO2\text{Equivalence mass of BaO =}\dfrac{\text{molar mass of BaO}}{\text{2}}
    =1532 =76.5 \begin{aligned} & =\dfrac{153}{2} \\\ & =76.5 \\\ \end{aligned}
    (Since 2 is the valence number for BaO\text{BaO} and 153 is a molar mass of BaO\text{BaO})
    The number of moles BaO\text{BaO}is given as,
    No. of moles of BaO=10-x76.5\text{No}\text{. of moles of BaO=}\dfrac{\text{10-x}}{\text{76}\text{.5}}
  2. Equivalent mass of CaO\text{CaO}:
    The mass of CaO\text{CaO} x gx\text{ g}
    Equivalence mass of CaO=molar mass of CaO2\text{Equivalence mass of CaO=}\dfrac{\text{molar mass of CaO}}{\text{2}}
    =562 =28 \begin{aligned} & =\dfrac{56}{2} \\\ & =28 \\\ \end{aligned}
    (Since 2 is the valence number for CaO\text{CaO} and 56 is a molar mass ofCaO\text{CaO})
    The number of moles CaO\text{CaO}is given as,
    No. of moles of CaO=x28\text{No}\text{. of moles of CaO=}\dfrac{\text{x}}{\text{28}}
    Equivalents of !! !! CaO !! !! +Equivalents of !! !! BaO !! !! = !! !! Equivalents of !! !! HCl\text{Equivalents of }\\!\\!~\\!\\!\text{ CaO }\\!\\!~\\!\\!\text{ +Equivalents of }\\!\\!~\\!\\!\text{ BaO }\\!\\!~\\!\\!\text{ = }\\!\\!~\\!\\!\text{ Equivalents of }\\!\\!~\\!\\!\text{ HCl}
    Let's find out the equivalent weight of HCl\text{HCl},
    Molarity =moles of soluteVolume of solution (in L)\text{Molarity =}\dfrac{\text{moles of solute}}{\text{Volume of solution (in L)}}
    We are given with molarity of HCl=2.5M\text{HCl=2}\text{.5M}
    The volume of required=100 cm3=1001000L=0.1L\text{The volume of required=100 c}{{\text{m}}^{\text{3}}}\text{=}\dfrac{\text{100}}{\text{1000}}\text{L=0}\text{.1L}
    Now substitute all values.
    Molarity =moles of soluteVolume of solution (in L)\text{Molarity =}\dfrac{\text{moles of solute}}{\text{Volume of solution (in L)}}
    2.5 M=moles of solute0.1 L\text{2}\text{.5 M=}\dfrac{\text{moles of solute}}{\text{0}\text{.1 L}}
    Or moles of solute=(0.1L) !!×!! 2.5 M\text{moles of solute=}\left( \text{0}\text{.1L} \right)\text{ }\\!\\!\times\\!\\!\text{ 2}\text{.5 M}
    Or moles of solute=0.25M\text{moles of solute=0}\text{.25M}
    Let's use the formula to find the values of
    Equivalents of !! !! CaO !! !! +Equivalents of !! !! BaO !! !! = !! !! Equivalents of !! !! HCl\text{Equivalents of }\\!\\!~\\!\\!\text{ CaO }\\!\\!~\\!\\!\text{ +Equivalents of }\\!\\!~\\!\\!\text{ BaO }\\!\\!~\\!\\!\text{ = }\\!\\!~\\!\\!\text{ Equivalents of }\\!\\!~\\!\\!\text{ HCl}
    0.25=x28+10x76.50.25=\dfrac{x}{28}+\dfrac{10-x}{76.5}
    Or 0.25×28×76.5=76.5x+28(10x)0.25\times 28\times 76.5=76.5x+28(10-x)
    Or 255.5=48.5x255.5=48.5x
    Orx=255.548.5x=\dfrac{255.5}{48.5}
    Or x=5.26x=5.26
    Thus the values of x are 5.26.
    Thus the total amount of CaO\text{CaO}is 5.26 gram and the total amount of BaO\text{BaO} is (10x) g=(10-5.26)g=4.76 g(10-x)\text{ g=(10-5}\text{.26)g=4}\text{.76 g}
    We are interested to find out the percentage of CaO\text{CaO}in the mixture.
    0/0Cao=5.2610 !!×!! 100{\scriptstyle{}^{\text{0}}/{}_{\text{0}}}\text{Cao=}\dfrac{\text{5}\text{.26}}{\text{10}}\text{ }\\!\\!\times\\!\\!\text{ 100}
    Or 0/0Cao=52.60/0{\scriptstyle{}^{\text{0}}/{}_{\text{0}}}\text{Cao}=52.6{\scriptstyle{}^{\text{0}}/{}_{\text{0}}}
    Thus the percentage of calcium oxide in the mixture of calcium oxide and barium oxide is 52.60/052.6{\scriptstyle{}^{\text{0}}/{}_{\text{0}}}

Hence, (C) is the correct option.

Note:
The number of the equivalent of acid required to neutralize the base mixture is always equal to the number of equivalents or concentration of acid present in the solution. This is also known as the law of equivalence.