Solveeit Logo

Question

Question: Tension in rod of length L and mass M at a distance y from F, when the rod is acted on by two unequa...

Tension in rod of length L and mass M at a distance y from F, when the rod is acted on by two unequal forces F1 and F2 where (F2< F1) at its ends is

A

F1(1 -y/L) + F2 (y/L)

B

F2(1 -y/L) + F1(y/L)

C

F1(1 + y/L) + F2(y/L)

D

F2(l +y/L) + F1(y/L)

Answer

F1(1 -y/L) + F2 (y/L)

Explanation

Solution

Acceleration along F1,

a = F1F2M\frac { \mathrm { F } _ { 1 } - \mathrm { F } _ { 2 } } { \mathrm { M } }

Mass of length y = m = ML\frac { \mathrm { M } } { \mathrm { L } } y

If T is tension in this length, then

F1 – T = ma = (MLy)(F1F2M)\left( \frac { M } { L } y \right) \left( \frac { F _ { 1 } - F _ { 2 } } { M } \right) = (F1 – F2)y/L

∴ T = F1 – (F1 – F2)y/L

or T = F1(1 – y/L) + F2(y/L)