Solveeit Logo

Question

Question: Temperature coefficient, \(\mu \quad =\quad \cfrac { { k }_{ { 35 }^{ 0 }C } }{ { k }_{ { 25 }^{ 0 }...

Temperature coefficient, μ=k350Ck250C\mu \quad =\quad \cfrac { { k }_{ { 35 }^{ 0 }C } }{ { k }_{ { 25 }^{ 0 }C } } of a reaction is 1.82. Calculate the energy of activation in calories. (R=1.987caldegree1mol1)(R = 1.987 cal {degree}^{-1}{mol}^{-1}).

Explanation

Solution

Hint: Activation energy can be defined as the minimum amount of extra energy that is required by a reacting molecule to get converted into a product. It can also be defined as the minimum amount of energy that is needed to activate or energize the molecules or atoms so that they can undergo a chemical reaction or transformation.

Complete step by step answer: It is given in the question that the value of the temperature coefficient which is the ratio of the equilibrium constant at 250C{25}^{0}C and equilibrium constant at 350C{35}^{0}C is 1.82 and we need to find out the energy of activation, Ea{E}_{a} in calories.

It is given that μ=k350Ck250C=1.82\mu \quad =\quad \cfrac { { k }_{ { 35 }^{ 0 }C } }{ { k }_{ { 25 }^{ 0 }C } } \quad = \quad 1.82.

And from Arrhenius equation, we have,
k350Ck250C=Ea2.303R[1T11T2]\cfrac { { k }_{ { 35 }^{ 0 }C } }{ { k }_{ { 25 }^{ 0 }C } } \quad =\quad \cfrac { { E }_{ a } }{ 2.303R } \left[ \cfrac { 1 }{ { T }_{ 1 } } \quad -\quad \cfrac { 1 }{ { T }_{ 2 } } \right]

Replacing k350Ck250C\cfrac { { k }_{ { 35 }^{ 0 }C } }{ { k }_{ { 25 }^{ 0 }C } } with μ\mu, we get
    μ=Ea2.303R[1T11T2]\implies \mu \quad =\quad \cfrac { { E }_{ a } }{ 2.303R } \left[ \cfrac { 1 }{ { T }_{ 1 } } \quad -\quad \cfrac { 1 }{ { T }_{ 2 } } \right]
Where, Ea=Activationenergy{E}_{a} = Activation \quad energy T1=250C{T}_{1} = {25}^{0}C, T2=350C{T}_{2} = {35}^{0}C and R=1.987caldegree1mol1R = 1.987 \quad cal \quad {degree}^{-1} \quad {mol}^{-1}.

Substituting these values in equation (1), we get,
1.82=Ea2.303×1.987[125135]1.82\quad =\quad \cfrac { { E }_{ a } }{ 2.303\quad \times \quad 1.987 } \left[ \cfrac { 1 }{ 25 } \quad -\quad \cfrac { 1 }{ 35 } \right]

Taking 2.303×1.9872.303 \quad \times \quad 1.987 to the left hand side of the equation, we get
    1.82×2.303×1.987=Ea[10875]\implies1.82\quad \times \quad 2.303\quad \times \quad 1.987\quad =\quad { E }_{ a }\left[ \cfrac { 10 }{ 875 } \right]

Now, solving for Ea{E}_{a}, we get
    Ea=1.82×2.303×1.987×875×0.1\implies{ E }_{ a }\quad =\quad 1.82\quad \times \quad 2.303\quad \times \quad 1.987\quad \times \quad 875\quad \times \quad 0.1
    Ea=728.7cal/mol\implies{ E }_{ a }\quad =\quad 728.7\quad cal/mol

Therefore, the activation energy is 728.7 cal/mol.

Note: Energy is defined as the capacity for some work whereas activation energy is the energy needed to form an activated complex during the chemical reaction. Activation energy is a type of energy needed to initiate or activate a reaction.