Solveeit Logo

Question

Question: ∫(tanx*tan2x*tan3x)dx...

∫(tanxtan2xtan3x)dx

Answer

(1/3)ln|sec3x| - (1/2)ln|sec2x| - ln|secx| + C

Explanation

Solution

To evaluate the integral (tanxtan2xtan3x)dx\int(\tan x \tan 2x \tan 3x)dx, we first need to simplify the integrand using a trigonometric identity.

We know that 3x=x+2x3x = x + 2x. Taking the tangent of both sides: tan(3x)=tan(x+2x)\tan(3x) = \tan(x + 2x) Using the tangent addition formula, tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}: tan(3x)=tanx+tan2x1tanxtan2x\tan(3x) = \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} Now, rearrange the equation to isolate the product tanxtan2xtan3x\tan x \tan 2x \tan 3x: tan(3x)(1tanxtan2x)=tanx+tan2x\tan(3x)(1 - \tan x \tan 2x) = \tan x + \tan 2x tan3xtanxtan2xtan3x=tanx+tan2x\tan 3x - \tan x \tan 2x \tan 3x = \tan x + \tan 2x Move the product term to one side and the other tangent terms to the other side: tanxtan2xtan3x=tan3xtanxtan2x\tan x \tan 2x \tan 3x = \tan 3x - \tan x - \tan 2x Now, substitute this expression back into the integral: (tanxtan2xtan3x)dx=(tan3xtan2xtanx)dx\int(\tan x \tan 2x \tan 3x)dx = \int(\tan 3x - \tan 2x - \tan x)dx We can integrate each term separately. Recall the standard integral formula for tangent: tan(ax)dx=1alnsec(ax)+C\int \tan(ax) dx = \frac{1}{a} \ln |\sec(ax)| + C Applying this formula to each term: tan3xdx=13lnsec3x\int \tan 3x dx = \frac{1}{3} \ln |\sec 3x| tan2xdx=12lnsec2x\int \tan 2x dx = \frac{1}{2} \ln |\sec 2x| tanxdx=lnsecx\int \tan x dx = \ln |\sec x| Combining these results, the integral becomes: (tan3xtan2xtanx)dx=13lnsec3x12lnsec2xlnsecx+C\int(\tan 3x - \tan 2x - \tan x)dx = \frac{1}{3} \ln |\sec 3x| - \frac{1}{2} \ln |\sec 2x| - \ln |\sec x| + C