Question
Question: ∫(tanx*tan2x*tan3x)dx...
∫(tanxtan2xtan3x)dx
(1/3)ln|sec3x| - (1/2)ln|sec2x| - ln|secx| + C
Solution
To evaluate the integral ∫(tanxtan2xtan3x)dx, we first need to simplify the integrand using a trigonometric identity.
We know that 3x=x+2x. Taking the tangent of both sides: tan(3x)=tan(x+2x) Using the tangent addition formula, tan(A+B)=1−tanAtanBtanA+tanB: tan(3x)=1−tanxtan2xtanx+tan2x Now, rearrange the equation to isolate the product tanxtan2xtan3x: tan(3x)(1−tanxtan2x)=tanx+tan2x tan3x−tanxtan2xtan3x=tanx+tan2x Move the product term to one side and the other tangent terms to the other side: tanxtan2xtan3x=tan3x−tanx−tan2x Now, substitute this expression back into the integral: ∫(tanxtan2xtan3x)dx=∫(tan3x−tan2x−tanx)dx We can integrate each term separately. Recall the standard integral formula for tangent: ∫tan(ax)dx=a1ln∣sec(ax)∣+C Applying this formula to each term: ∫tan3xdx=31ln∣sec3x∣ ∫tan2xdx=21ln∣sec2x∣ ∫tanxdx=ln∣secx∣ Combining these results, the integral becomes: ∫(tan3x−tan2x−tanx)dx=31ln∣sec3x∣−21ln∣sec2x∣−ln∣secx∣+C