Solveeit Logo

Question

Question: $\tan\left(\tan^{-1}(-1)+\frac{\pi}{3}\right)$...

tan(tan1(1)+π3)\tan\left(\tan^{-1}(-1)+\frac{\pi}{3}\right)

Answer

2 - 3\sqrt{3}

Explanation

Solution

Evaluate tan1(1)\tan^{-1}(-1) to find π4-\frac{\pi}{4}. Substitute this into the expression to get tan(π4+π3)\tan(-\frac{\pi}{4} + \frac{\pi}{3}). Apply the tangent addition formula tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} with tan(π4)=1\tan(-\frac{\pi}{4}) = -1 and tan(π3)=3\tan(\frac{\pi}{3}) = \sqrt{3}. This yields 1+31(1)3=311+3\frac{-1+\sqrt{3}}{1-(-1)\sqrt{3}} = \frac{\sqrt{3}-1}{1+\sqrt{3}}. Rationalizing the denominator gives the final answer 232-\sqrt{3}.