Question
Question: Tangents drawn from (c, d) to the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\) make a...
Tangents drawn from (c, d) to the hyperbola a2x2−b2y2=1 make angles α and β with the x - axis. If tanα.tanβ=1 then c2 - d2 =
A
a2 - b2
B
b2 - a2
C
a2 + b2
D
a2b2
Answer
a2 + b2
Explanation
Solution
If ‘m’ is the slope of the tangent through (c, d) to the Hyperbola, then
(e2 – a2) m2 – 2cdm+d2+b2 =0
⇒ m1m2 = c2−a2d2+b2
⇒ tanα. tanβ = c2−a2d2+b2=1
⇒ e2 – e2 = a2 +b2