Solveeit Logo

Question

Question: Tangents drawn from (c, d) to the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\) make a...

Tangents drawn from (c, d) to the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 make angles α\alpha and β\beta with the x - axis. If tanα.tanβ=1\alpha.\tan\beta = 1 then c2 - d2 =

A

a2 - b2

B

b2 - a2

C

a2 + b2

D

a2b2

Answer

a2 + b2

Explanation

Solution

If ‘m’ is the slope of the tangent through (c, d) to the Hyperbola, then

(e2 – a2) m2 – 2cdm+d2+b2 =0

⇒ m1m2 = d2+b2c2a2\frac{d^{2} + b^{2}}{c^{2} - a^{2}}

⇒ tanα. tanβ = d2+b2c2a2=1\frac{d^{2} + b^{2}}{c^{2} - a^{2}} = 1

⇒ e2 – e2 = a2 +b2