Solveeit Logo

Question

Question: Tangents are drawn to y = cos x from the point P(0, 0). Points of contact of these tangents will alw...

Tangents are drawn to y = cos x from the point P(0, 0). Points of contact of these tangents will always lie on

A

1x2=1y2+1\frac { 1 } { x ^ { 2 } } = \frac { 1 } { y ^ { 2 } } + 1

B

1x2=1y21\frac { 1 } { x ^ { 2 } } = \frac { 1 } { y ^ { 2 } } - 1

C

x2 + y2 = 1

D

x2− y2 = 1

Answer

1x2=1y21\frac { 1 } { x ^ { 2 } } = \frac { 1 } { y ^ { 2 } } - 1

Explanation

Solution

For y = cos x,dydx\frac { d y } { d x } = −sinx.

Let the point of contact be (x0, cosx0). equation of tangent to y = cosx at this point is (y - cosx0) = sinx0(x0 - x). It must pass through (0, 0).

Thus x0 = -cotx0. We also have y0 = cosx0

1y021x02\frac { 1 } { y _ { 0 } ^ { 2 } } - \frac { 1 } { x _ { 0 } ^ { 2 } }. Thus required locus is 1y21x2\frac { 1 } { y ^ { 2 } } - \frac { 1 } { x ^ { 2 } } =1