Solveeit Logo

Question

Question: Tangents are drawn to x<sup>2</sup> + y<sup>2</sup> = 16 from the point P(0, h). These tangents meet...

Tangents are drawn to x2 + y2 = 16 from the point P(0, h). These tangents meet the x-axis at A and B. If the area of triangle PAB is minimum then

A

h = 122\sqrt{2}

B

h = 62\sqrt{2}

C

h = 82\sqrt{2}

D

h = 42\sqrt{2}

Answer

h = 42\sqrt{2}

Explanation

Solution

Let ∠COA = θ ⇒ OA = OC.secθ = 4 secθ Also ∠OPC = θ ⇒ OP = OC.cosecθ =4cosecθ

Now ∆PAB = OA.OP = 32sin2θ\frac { 32 } { \sin 2 \theta }

For ∆PAB to be minimum sin2 θ = 1 ⇒ θ = π4\frac { \pi } { 4 }

⇒ P = (0, 424 \sqrt { 2 })