Solveeit Logo

Question

Mathematics Question on Conic sections

Tangents are drawn to the hyperbola x29y24=1\frac{x^2}{9}-\frac{y^2}{4}=1, parallel to the straight line 2xy=1.2x-y=1. The points of contacts of the tangents on the hyperbola are

A

(922,12)\Bigg(\frac{9}{2\sqrt2},\frac{1}{\sqrt2}\Bigg)

B

(922,12)\Bigg(-\frac{9}{2\sqrt2},\frac{1}{\sqrt2}\Bigg)

C

(33,22)(3\sqrt3,-2\sqrt2)

D

(33,22)(-3\sqrt3,2\sqrt2)

Answer

(922,12)\Bigg(-\frac{9}{2\sqrt2},\frac{1}{\sqrt2}\Bigg)

Explanation

Solution

Equation of tangent to x2a2y2b2=1\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 is
y=mx±a2m2b2y=mx\pm\sqrt{a^2m^2-b^2}
Description of Situation\, \, \, \, If two straight lines
a1x+b1y+c1=0\, \, \, \, \, \, \, \, \, \, \, \, a_1x+b_1y+c_1=0
and a2x+b2y+c2=0areidentical.Then,a1a2=b1b2=c1c2a_2x+b_2y+c_2=0\, \, \, are identical.Then,\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c-1}{c-2}
Equation of tangent, parallel to y=2x1y=2x-1 is
y=2x±9(4)4\, \, \, \, \, \, \, \, \, \, \, y=2x\pm\sqrt{9(4)-4}
y=2x±32.......(i)\therefore \, \, \, \, \, \, \, \, \, \, \, y=2x\pm\sqrt{32}\, \, \, \, \, \, \, \, \, \, \, .......(i)
The equation of tangent at (x_1,y_1) is
xx19yy14=1.....(ii)\, \, \, \, \, \, \, \, \frac{xx_1}{9} - \frac{yy_1}{4}=1\, \, \, \, \, \, \, \, \, \, \, \, \, .....(ii)
From Eqs. (i) and (ii),
2x19=1y14=±321x1=922andy1=12\frac{2}{\frac{x_1}{9}}=\frac{-1}{\frac{-y_1}{4}}=\frac{\pm\sqrt{32}}{1} \Rightarrow x_1=-\frac{9}{2\sqrt2} and y_1=-\frac{1}{\sqrt2}
orx1=922,y1=12\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, x_1=\frac{9} {2\sqrt2},y_1=\frac{1}{\sqrt2}