Solveeit Logo

Question

Question: Tangents are drawn to the hyperbola \(\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1\), parallel to the...

Tangents are drawn to the hyperbola x29y24=1\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1, parallel to the straight line 2xy=12x - y = 1. the points of contact of the tangents on the hyperbola are:
A. (92,12)\left( {\dfrac{9}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)
B. (922,12)\left( { - \dfrac{9}{{2\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)
C. (33,22)\left( {3\sqrt 3 , - 2\sqrt 2 } \right)
D. (33,22)\left( { - 3\sqrt 3 ,2\sqrt 2 } \right)

Explanation

Solution

Take the derivative of both the equations i.e the equation of straight line and equation of hyperbola and by rearranging the equations, determine the value of xx. After finding the value of xx substitute the value of xx in the straight line to get the value of yy.

Complete step-by-step answer:
Given data:
The hyperbola equation is x29y24=1\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1
The straight-line equation is 2xy=12x - y = 1
Now, calculate the slope of the straight line by differentiating the equation 2xy=12x - y = 1 with respect to xx.

ddx(2xy)=ddx(1) 2dydx=0 dydx=2\dfrac{d}{{dx}}\left( {2x - y} \right) = \dfrac{d}{{dx}}\left( 1 \right)\\\ 2 - \dfrac{{dy}}{{dx}} = 0\\\ \dfrac{{dy}}{{dx}} = 2

Now, differentiate the hyperbola equation x29y24=1\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1 with respect to xx :
ddx(x29y24)=ddx(1) 2x92y4dydx=0 dydx=2x9×42y =4x9y \dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4}} \right) = \dfrac{d}{{dx}}\left( 1 \right)\\\ \dfrac{{2x}}{9} - \dfrac{{2y}}{4}\dfrac{{dy}}{{dx}} = 0\\\ \dfrac{{dy}}{{dx}} = \dfrac{{2x}}{9} \times \dfrac{4}{{2y}}\\\ = \dfrac{{4x}}{{9y}}
Substitute the value of dydx=2\dfrac{{dy}}{{dx}} = 2 in dydx=4x9y\dfrac{{dy}}{{dx}} = \dfrac{{4x}}{{9y}}.
2=4x9y 4x=18y x=184y x=92y 2 = \dfrac{{4x}}{{9y}}\\\ 4x = 18y\\\ x = \dfrac{{18}}{4}y\\\ x = \dfrac{9}{2}y
Substitute the value ofxx in x29y24=1\dfrac{{{x^2}}}{9} - \dfrac{{{y^2}}}{4} = 1.
(92y)29y24=1 9y24y24=1 8y24=1 y=±12 \dfrac{{{{\left( {\dfrac{9}{2}y} \right)}^2}}}{9} - \dfrac{{{y^2}}}{4} = 1\\\ \dfrac{{9{y^2}}}{4} - \dfrac{{{y^2}}}{4} = 1\\\ \dfrac{{8{y^2}}}{4} = 1\\\ y = \pm \dfrac{1}{{\sqrt 2 }}
Now, calculate the value of xx by substituting the value of y in x=92yx = \dfrac{9}{2}y.
x=92(±12) =±922 x = \dfrac{9}{2}\left( { \pm \dfrac{1}{{\sqrt 2 }}} \right)\\\ = \pm \dfrac{9}{{2\sqrt 2 }}
Hence, the points of contact are (922,12)and(922,12)\left( {\dfrac{9}{{2\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right){\rm{ and }}\left( { - \dfrac{9}{{2\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right).

Option (A) and (B) are the correct answers.

Note: The general equation of the tangent to hyperbola is y=mx±a2m2b2y = mx \pm \sqrt {{a^2}{m^2} - {b^2}} , where the slope is given by mm. Make sure that chain rule is used in derivatives of complex functions.