Solveeit Logo

Question

Question: Tangents are drawn from any point on the hyperbola \(\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1\) t...

Tangents are drawn from any point on the hyperbola x29y24=1\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1 to the circle x2+y2=9{{x}^{2}}+{{y}^{2}}=9. Find the locus of midpoint of the chord of contact.

Explanation

Solution

First, assume any point on the hyperbola to the circle. Then, the chord of contact of the circle concerning the point. After that find the equation of chord in mid-point form. Now equate both the equations to get the value of secθ\sec \theta and tanθ\tan \theta . As we know sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1, substitute the values in it and simplify. The equation derived is the locus of midpoint of the chord of contact.

Complete step-by-step solution:
Given: - Equation of the hyperbola is x29y24=1\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1.
The equation of the circle is x2+y2=9{{x}^{2}}+{{y}^{2}}=9.
Let any point on the hyperbola to the circle be (3secθ,2tanθ)\left( 3\sec \theta ,2\tan \theta \right) and the midpoint of the chord of contact be (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right).
Then, the chord of contact of the circle concerning the point (3secθ,2tanθ)\left( 3\sec \theta ,2\tan \theta \right) is,
(3secθ)x+(2tanθ)y=9\left( 3\sec \theta \right)x+\left( 2\tan \theta \right)y=9...............….. (1)
Now, the equation of chord in mid-point form is
xx1+yy1=x12+y12x{{x}_{1}}+y{{y}_{1}}={{x}_{1}}^{2}+{{y}_{1}}^{2}.................….. (2)
Since both the equation (1) and (2) represent the same line.
As we know that for unique or many solutions,
a1a2=b1b2=c1c2\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}
Then from equation (1) and (2),
\Rightarrow 3secθx1=2tanθy1=9x12+y12\dfrac{3\sec\theta}{{{x}_{1}}}=\dfrac{2\tan\theta}{{{y}_{1}}}=\dfrac{9}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}
Now, take the first and last term to find the value of secθ\sec \theta ,
\Rightarrow 3secθx1=9x12+y12\dfrac{3\sec \theta }{{{x}_{1}}}=\dfrac{9}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}
Multiply the denominator of the left side to the numerator of the right side,
\Rightarrow 3secθ=9x1x12+y123\sec \theta =\dfrac{9{{x}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}
Divide both sides by 3,
\Rightarrow secθ=3x1x12+y12\sec \theta =\dfrac{3{{x}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}
Now, take the second and last term to find the value of tanθ\tan \theta ,
\Rightarrow 2tanθy1=9x12+y12\dfrac{2\tan \theta }{{{y}_{1}}}=\dfrac{9}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}
Multiply the denominator of the left side to the numerator of the right side,
\Rightarrow 2tanθ=9y1x12+y122\tan \theta =\dfrac{9{{y}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}
Divide both sides by 2,
\Rightarrow tanθ=9y12(x12+y12)\tan \theta =\dfrac{9{{y}_{1}}}{2\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}
As we know, sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1.
Substitute the values of secθ\sec \theta and tanθ\tan \theta from above,
\Rightarrow (3x1x12+y12)2[9y12(x12+y12)]2=1{{\left( \dfrac{3{{x}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}} \right)}^{2}}-{{\left[ \dfrac{9{{y}_{1}}}{2\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)} \right]}^{2}}=1
Square the terms,
\Rightarrow 9x12(x12+y12)281y124(x12+y12)2=1\dfrac{9{{x}_{1}}^{2}}{{{\left({{x}_{1}}^{2}+{{y}_{1}}^{2}\right)}^{2}}}-\dfrac{81{{y}_{1}}^{2}}{4{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}=1
Take (x12+y12)2{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}} common from the denominator,
\Rightarrow 1(x12+y12)2[9x1281y124]=1\dfrac{1}{{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}\left[ 9{{x}_{1}}^{2}-\dfrac{81{{y}_{1}}^{2}}{4} \right]=1
Divide both sides by (x12+y12)281\dfrac{{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}{81},
\Rightarrow 9x128181y124×81=(x12+y12)281\dfrac{9{{x}_{1}}^{2}}{81}-\dfrac{81{{y}_{1}}^{2}}{4\times 81}=\dfrac{{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}{81}
Cancel out the common factors from numerator and denominator,
\Rightarrow x129y124=(x12+y129)2\dfrac{{{x}_{1}}^{2}}{9}-\dfrac{{{y}_{1}}^{2}}{4}={{\left( \dfrac{{{x}_{1}}^{2}+{{y}_{1}}^{2}}{9} \right)}^{2}}

Hence, the locus of midpoint of the chord of contact is x129y124=(x12+y129)2\dfrac{{{x}_{1}}^{2}}{9}-\dfrac{{{y}_{1}}^{2}}{4}={{\left( \dfrac{{{x}_{1}}^{2}+{{y}_{1}}^{2}}{9} \right)}^{2}}.

Note: A hyperbola is an open curve with two branches, the intersection of a plane with both halves of a double cone. The plane does not have to be parallel to the axis of the cone; the hyperbola will be symmetrical in any case.
The standard form of the equation of the hyperbola is x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1.