Solveeit Logo

Question

Mathematics Question on Ellipse

Tangent to the ellipse x232+y218=1\frac{x^2}{32}+\frac{y^2}{18}=1 having slope 34\frac{-3}{4} meets the co-ordinate axes in A and B. Find the area of the triangle AOB, where O is the origin

A

12 units

B

8 units

C

24 units

D

32 units.

Answer

24 units

Explanation

Solution

Tangent to the ellipsex2a2+y2b2=1\frac{x^{2}}{a^{2}} +\frac{y^{2}}{b^{2}} = 1 with slope mm is y=mx+a2m2+b2y= mx+\sqrt{a^{2}m^{2}+b^{2}} Here a2=32,b2=18,m=3/4a^{2}= 32, b^{2}=18, m= - 3/4 \therefore tangent is y=34x+32916+18y= -\frac{3}{4}x +\sqrt{32\cdot\frac{9}{16}+18} =34x+6= -\frac{3}{4}x+6 3x+4y=24 \therefore 3x+4y=24 x8+y6=1\Rightarrow \frac{x}{8}+\frac{y}{6} = 1 A\therefore A is (8,0)B\left(8, 0\right) B is (0,6)\left(0, 6\right) \therefore area of ΔAOB=12(8)(6)\Delta AOB = \frac{1}{2} \left(8\right)\left(6\right) =24= 24 sq units