Solveeit Logo

Question

Question: Tangent to a curve intersect the y axis at a point P. A line perpendicular to this tangent through P...

Tangent to a curve intersect the y axis at a point P. A line perpendicular to this tangent through P passes through point (1, 0). The differential equation of the curves is

A

y. dydxx(dydx)2\frac{dy}{dx} - x\left( \frac{dy}{dx} \right)^{2}= 0

B

xd2ydx2+(dydx)2\frac{d^{2}y}{dx^{2}} + \left( \frac{dy}{dx} \right)^{2}= 1

C

y. dxdy\frac{dx}{dy} + x = 1

D

None of these

Answer

y. dydxx(dydx)2\frac{dy}{dx} - x\left( \frac{dy}{dx} \right)^{2}= 0

Explanation

Solution

Equation of tangent at the point

R (x, f(x)) is Y – f(x) = f '(x) (X – x)

Coordinate of point P is (0, f(x) – x f '(x))

The slope of the perpendicular line through 'P' is

f(x)xf(x)1=1f(x)\frac{f(x) - xf'(x)}{- 1} = - \frac{1}{f'(x)}

ydydx\frac{dy}{dx} – x (dydx)2\left( \frac{dy}{dx} \right)^{2} = 1 is differential equation