Solveeit Logo

Question

Question: Tangent drawn to the circle at P (1,\(\sqrt{3}\)) on the circle x<sup>2</sup> + y<sup>2</sup> = 4. W...

Tangent drawn to the circle at P (1,3\sqrt{3}) on the circle x2 + y2 = 4. Which meets its transverse axis of hyperbolax24\frac{x^{2}}{4}y21\frac{y^{2}}{1}=1 at Q. From Q a line is drawn parallel to conjugate axis, which cuts the hyperbola at R above the x- axis, then PR equals-

A

3

B

10\sqrt{10}

C

33+42\frac{3\sqrt{3} + 4}{2}

D

None of these

Answer

3

Explanation

Solution

x24\frac{x^{2}}{4}y21\frac{y^{2}}{1} = 1

P(1, 3\sqrt{3}) ® P(2×12,232)\left( 2 \times \frac{1}{2},\frac{2\sqrt{3}}{2} \right)=(2cosπ3,2sinπ2)\left( 2\cos\frac{\pi}{3},2\sin\frac{\pi}{2} \right)

coordinate of Q is (2sec p/3, 0)

and coordinate of R is (2secp/3, tanp/3)

Ž R (4, 3\sqrt{3}) (using definition of parametric)

PR=(41)2+(33)2\sqrt{(4–1)^{2} + (\sqrt{3}–\sqrt{3})^{2}}= 3