Solveeit Logo

Question

Question: \(\tan\frac{2\pi}{5} - \tan\frac{\pi}{15} - \sqrt{3}\tan\frac{2\pi}{5}\tan\frac{\pi}{15}\) is equal ...

tan2π5tanπ153tan2π5tanπ15\tan\frac{2\pi}{5} - \tan\frac{\pi}{15} - \sqrt{3}\tan\frac{2\pi}{5}\tan\frac{\pi}{15} is equal to

A

3- \sqrt{3}

B

13\frac{1}{\sqrt{3}}

C

1

D

3\sqrt{3}

Answer

3\sqrt{3}

Explanation

Solution

We have tan6π15tanπ151+tan6π15tanπ15=tanπ3\frac { \tan \frac { 6 \pi } { 15 } - \tan \frac { \pi } { 15 } } { 1 + \tan \frac { 6 \pi } { 15 } \tan \frac { \pi } { 15 } } = \tan \frac { \pi } { 3 }

tan6π15tanπ15=3+3tan6π15tanπ15\Rightarrow \tan\frac{6\pi}{15} - \tan\frac{\pi}{15} = \sqrt{3} + \sqrt{3}\tan\frac{6\pi}{15}\tan\frac{\pi}{15}

tan6π15tanπ153tan6π15tanπ15=3\Rightarrow \tan\frac{6\pi}{15} - \tan\frac{\pi}{15} - \sqrt{3}\tan\frac{6\pi}{15}\tan\frac{\pi}{15} = \sqrt{3}.