Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

tanx=tanx\tan | x |= | \tan x | if

A

x(2k+12π,kπ)x \in\left(-\frac{2k+1}{2}\pi,-k \pi\right)

B

x(kπ,2k+12π)x \in\left(k \pi ,\frac{2k+1}{2} \pi\right)

C

x(2k+12π,kπ)x \in\left(\frac{2k+1}{2}\pi,k \pi\right)

D

x(kπ,π2k12)x \in\left(-k \pi,-\pi \frac{2k-1}{2}\right)

Answer

x(2k+12π,kπ)x \in\left(-\frac{2k+1}{2}\pi,-k \pi\right)

Explanation

Solution

tanx| tan x | is always positive tanx>0x\Rightarrow \, \, \, \tan |x | > 0 \Rightarrow | x | lies in either II or IIIIII quadrant By verification only (1) satisfy these conditions Where kZk \, \in \, Z