Solveeit Logo

Question

Question: \(\tan x + c\)...

tanx+c\tan x + c

A

sin3x+cos3xsin2xcos2x6mudx=\int_{}^{}\frac{\sin^{3}x + \cos^{3}x}{\sin^{2}x\cos^{2}x}\mspace{6mu} dx =

B

tanx+cotx+c\tan x + \cot x + c

C

tanxcotx+c\tan x - \cot x + c

D

cosecxcotx+c\text{cosec}x - \cot x + c

Answer

sin3x+cos3xsin2xcos2x6mudx=\int_{}^{}\frac{\sin^{3}x + \cos^{3}x}{\sin^{2}x\cos^{2}x}\mspace{6mu} dx =

Explanation

Solution

cosx4sin2x6mudx=\int_{}^{}{\cos x\sqrt{4 - \sin^{2}x}}\mspace{6mu} dx =

12sinx4sin2x2sin1(12sinx)+c\frac{1}{2}\sin x\sqrt{4 - \sin^{2}x} - 2\sin^{- 1}\left( \frac{1}{2}\sin x \right) + c

12sinx4sin2x+2sin1(12sinx)+c\frac{1}{2}\sin x\sqrt{4 - \sin^{2}x} + 2\sin^{- 1}\left( \frac{1}{2}\sin x \right) + c.