Question
Mathematics Question on Properties of Inverse Trigonometric Functions
tan(4π+2θ)+tan(4π−2θ) is equal to
A
secθ
B
2secθ
C
sec2θ
D
sinθ
Answer
2secθ
Explanation
Solution
We have,
tan(4π+2θ)+tan(4π−2θ)
=1−tan4πtan2θtan4π+tan2θ+1+tan4πtan2θtan4π−tan2θ
=1−tan2θ1+tan2θ+1+tan2θ1−tan2θ
=1−tan22θ(1+tan2θ)2+(1−tan2θ)2
=1−tan22θ1+tan22θ+2tan2θ+1+tan22θ−2tan2θ
=2[1−tan2θ/21+tan2θ/2]
=cosθ2[∵cos2θ=1+tan2θ1−tan2θ]
=2secθ