Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

tan(π4+θ2)+tan(π4θ2) \tan\left(\frac{\pi}{4} +\frac{\theta}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) is equal to

A

secθ\sec \, \theta

B

2secθ2 \sec \, \theta

C

secθ2\sec \, \frac {\theta} {2}

D

sinθ\sin \, \theta

Answer

2secθ2 \sec \, \theta

Explanation

Solution

We have,
tan(π4+θ2)+tan(π4θ2)\tan \left(\frac{\pi}{4}+\right. \left.\frac{\theta}{2}\right)+\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)
=tanπ4+tanθ21tanπ4tanθ2+tanπ4tanθ21+tanπ4tanθ2= \frac{\tan \frac{\pi}{4}+\tan \frac{\theta}{2}}{1-\tan \frac{\pi}{4} \tan \frac{\theta}{2}}+\frac{\tan \frac{\pi}{4}-\tan \frac{\theta}{2}}{1+\tan \frac{\pi}{4} \tan \frac{\theta}{2}}
=1+tanθ21tanθ2+1tanθ21+tanθ2= \frac{1+\tan \frac{\theta}{2}}{1-\tan \frac{\theta}{2}}+\frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}}
=(1+tanθ2)2+(1tanθ2)21tan2θ2= \frac{\left(1+\tan \frac{\theta}{2}\right)^{2}+\left(1-\tan \frac{\theta}{2}\right)^{2}}{1-\tan ^{2} \frac{\theta}{2}}
=1+tan2θ2+2tanθ2+1+tan2θ22tanθ21tan2θ2=\frac{1+\tan ^{2} \frac{\theta}{2}+2 \tan \frac{\theta}{2}+1+\tan ^{2} \frac{\theta}{2}-2 \tan \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}
=2[1+tan2θ/21tan2θ/2]=2\left[\frac{1+\tan ^{2} \theta / 2}{1-\tan ^{2} \theta / 2}\right]
=2cosθ[cos2θ=1tan2θ1+tan2θ]=\frac{2}{\cos \theta} \,\,\,\left[\because \cos 2 \,\theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right]
=2secθ=2 \sec \,\theta