Question
Mathematics Question on Inverse Trigonometric Functions
tan[21sin−1(1+x22x)+21cos−1(1+x21−x2)]=
A
∞
B
1
C
1−x22x
D
1+x22x
Answer
1−x22x
Explanation
Solution
tan[21sin−1(1+x22x)+21cos−1(1+x21−x2)]
Putting x=tanθ⇒θ=tan−1x
=tan[21sin−1(1+tan2θ2tanθ)+21cos−1(1+tan2θ1−tan2θ)]
=tan(21sin−1(sin2θ)+21cos−1(cos2θ))
=tan(22θ+22θ)=tan(2θ)=tan(2tan−1x)
=tan(tan−1(1−x22x))=1−x22x