Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

tan[12sin1(2x1+x2)+12cos1(1x21+x2)]=\tan\left[\frac{1}{2} \sin^{-1} \left(\frac{2x}{1+x^{2}}\right) + \frac{1}{2} \cos^{-1} \left(\frac{1-x^{2}}{1+x^{2}}\right)\right] =

A

\infty

B

1

C

2x1x2 \frac{2x}{1 - x^2}

D

2x1+x2 \frac{2x}{1+ x^2}

Answer

2x1x2 \frac{2x}{1 - x^2}

Explanation

Solution

tan[12sin1(2x1+x2)+12cos1(1x21+x2)]\tan\left[\frac{1}{2} \sin^{-1} \left(\frac{2x}{1+x^{2}}\right) + \frac{1}{2} \cos^{-1} \left(\frac{1-x^{2}}{1+x^{2}}\right)\right]
Putting x=tanθθ=tan1xx = \tan \theta \Rightarrow \theta = \tan^{-1} x
=tan[12sin1(2tanθ1+tan2θ)+12cos1(1tan2θ1+tan2θ)]= \tan \left[\frac{1}{2} \sin ^{-1} \left(\frac{2\tan \theta}{1+\tan^{2} \theta }\right) + \frac{1}{2} \cos ^{-1} \left(\frac{1-\tan ^{2}\theta}{1+\tan ^{2} \theta}\right)\right]
=tan(12sin1(sin2θ)+12cos1(cos2θ))=\tan \left(\frac{1}{2}\sin ^{-1} \left(\sin 2 \theta\right) + \frac{1}{2} \cos^{-1} \left(\cos 2\theta\right) \right)
=tan(2θ2+2θ2)=tan(2θ)=tan(2tan1x)= \tan \left(\frac{2\theta}{2} + \frac{2\theta}{2}\right) =\tan \left(2\theta\right)=\tan \left(2 \tan^{-1} x\right)
=tan(tan1(2x1x2))=2x1x2= \tan \left(\tan^{-1} \left(\frac{2x}{1-x^{2}}\right) \right) =\frac{2x}{1-x^{2}}