Question
Question: \(\tan \left[ \frac { 1 } { 2 } \sin ^ { - 1 } \left( \frac { 2 a } { 1 + a ^ { 2 } } \right) + \fra...
tan[21sin−1(1+a22a)+21cos−1(1+a21−a2)]=
A
1+a22a
B
1+a21−a2
C
1−a22a
D
None of these
Answer
1−a22a
Explanation
Solution
tan[21sin−1(1+a22a)+21cos−1(1+a21−a2)]
=tan[21sin−1(1+tan2θ2tanθ)+21cos−1(1+tan2θ1−tan2θ)]
(Let a=tanθ )
=tan[21sin−1(sin2θ)+21cos−1(cos2θ)]
=tan(2θ)=tan2θ=1−tan2θ2tanθ=1−a22a
Trick : Put a=1, then tan(4π+4π)=∞, which is given by (3).