Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

tan(cos1(152)sin1(417))\tan\left(\cos^{-1}\left( \frac{1}{5\sqrt{2}}\right)-\sin^{-1}\left(\frac{4}{\sqrt{17}}\right)\right) is

A

293\frac{\sqrt{29}}{3}

B

293\frac{29}{3}

C

329\frac{\sqrt{3}}{29}

D

329\frac{3}{29}

Answer

329\frac{3}{29}

Explanation

Solution

tan(cos1(152)sin1(417)) \tan\left(\cos^{-1}\left( \frac{1}{5\sqrt{2}}\right)-\sin^{-1}\left(\frac{4}{\sqrt{17}}\right)\right)
=tan(π2sin1(152)sin1(417))= \tan\left(\frac{\pi}{2} - \sin^{-1}\left( \frac{1}{5\sqrt{2}}\right)-\sin^{-1}\left(\frac{4}{\sqrt{17}}\right)\right)
=tan(π2(sin1417+sin1152))= \tan\left(\frac{\pi}{2} - \left(\sin^{-1} \frac{4}{\sqrt{17}}+\sin^{-1}\frac{1}{5\sqrt{2}}\right)\right)
=tan(π2sin1(4171150+15211617))= \tan\left(\frac{\pi}{2} - \sin^{-1} \left(\frac{4}{\sqrt{17}} \sqrt{1-\frac{1}{50} }+\frac{1}{5\sqrt{2}} \sqrt{1-\frac{16}{17}}\right)\right)
=tan(π2sin1(417.752+152.117))= \tan\left(\frac{\pi}{2} - \sin^{-1} \left(\frac{4}{\sqrt{17}} . \frac{7}{5\sqrt{2}} +\frac{1}{5\sqrt{2}}. \frac{1}{\sqrt{17}}\right)\right)
=cot(sin12952.17)=cot(cot1329)=\cot\left(\sin^{-1} \frac{29}{5\sqrt{2}.\sqrt{17}}\right)=\cot\left(\cot^{-1} \frac{3}{29}\right)
=329= \frac{3}{29}.