Solveeit Logo

Question

Question: Tan inverse √1 + x square minus 1 by X in terms of tan inverse x...

Tan inverse √1 + x square minus 1 by X in terms of tan inverse x

Answer

12tan1(x)\frac{1}{2}\tan^{-1}(x)

Explanation

Solution

Let x=tanθx = \tan \theta. The expression transforms to tan1(secθ1tanθ)\tan^{-1}\left(\frac{\sec\theta - 1}{\tan\theta}\right). Using trigonometric identities, this simplifies to tan1(1cosθsinθ)\tan^{-1}\left(\frac{1-\cos\theta}{\sin\theta}\right). Applying half-angle formulas (1cosθ=2sin2(θ/2)1-\cos\theta = 2\sin^2(\theta/2) and sinθ=2sin(θ/2)cos(θ/2)\sin\theta = 2\sin(\theta/2)\cos(\theta/2)), the expression becomes tan1(tan(θ/2))\tan^{-1}(\tan(\theta/2)). Since θ=tan1(x)\theta = \tan^{-1}(x), θ(π/2,π/2)\theta \in (-\pi/2, \pi/2), which implies θ/2(π/4,π/4)\theta/2 \in (-\pi/4, \pi/4). In this interval, tan1(tan(θ/2))=θ/2\tan^{-1}(\tan(\theta/2)) = \theta/2. Substituting back θ=tan1(x)\theta = \tan^{-1}(x) yields the final result.