Solveeit Logo

Question

Question: TAN 6X VALUE IF X IS PIE/ 48...

TAN 6X VALUE IF X IS PIE/ 48

Answer

sqrt(2) - 1

Explanation

Solution

Given x=π48x = \frac{\pi}{48}, we need to find tan(6x)\tan(6x). Calculate the angle: 6x=6×π48=π86x = 6 \times \frac{\pi}{48} = \frac{\pi}{8}. Use the half-angle identity: tan(θ2)=1cosθsinθ\tan(\frac{\theta}{2}) = \frac{1 - \cos\theta}{\sin\theta}. Let θ2=π8\frac{\theta}{2} = \frac{\pi}{8}, so θ=π4\theta = \frac{\pi}{4}. tan(π8)=1cos(π4)sin(π4)=11212=21\tan\left(\frac{\pi}{8}\right) = \frac{1 - \cos\left(\frac{\pi}{4}\right)}{\sin\left(\frac{\pi}{4}\right)} = \frac{1 - \frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = \sqrt{2}-1