Solveeit Logo

Question

Question: \[\tan 20{^\circ}\tan 40{^\circ}\tan 60{^\circ}\tan 80{^\circ} =\]...

tan20tan40tan60tan80=\tan 20{^\circ}\tan 40{^\circ}\tan 60{^\circ}\tan 80{^\circ} =

A

1

B

2

C

3

D

3/2\sqrt{3}/2

Answer

3

Explanation

Solution

tan20otan40otan60otan80o\tan{}20^{o}\tan{}40^{o}\tan{}60^{o}\tan{}80^{o}

=sin20osin40osin80otan60ocos20ocos40ocos80o= \frac{\sin 20^{o}\sin 40^{o}\sin 80^{o}\tan 60^{o}}{\cos 20^{o}\cos 40^{o}\cos 80^{o}}

Here Nr=(sin20osin40osin80o)N^{r} = (\sin{}20^{o}\sin{}40^{o}\sin{}80^{o})

=sin20o2(2sin40osin80o)= \frac{\sin 20^{o}}{2}(2\sin{}40^{o}\sin{}80^{o})

=sin20o2(cos40ocos120o)= \frac{\sin 20^{o}}{2}(\cos{}40^{o} - \cos{}120^{o})

=12sin20o(12sin220o+12)= \frac{1}{2}\sin{}20^{o}\left( 1 - 2\sin^{2}20^{o} + \frac{1}{2} \right)

=12sin20o(322sin220o)=sin60o4=38= \frac{1}{2}\sin{}20^{o}\left( \frac{3}{2} - 2\sin^{2}20^{o} \right) = \frac{\sin 60^{o}}{4} = \frac{\sqrt{3}}{8}

Now, we take Dr=cos20ocos40ocos80oD^{r} = \cos 20^{o}\cos 40^{o}\cos 80^{o}

=sin2320o23sin20o=sin160o8sin20o=sin20o8sin20o=18= \frac{\sin 2^{3}20^{o}}{2^{3}\sin 20^{o}} = \frac{\sin 160^{o}}{8\sin 20^{o}} = \frac{\sin 20^{o}}{8\sin 20^{o}} = \frac{1}{8}

\therefore Hence tan20otan40otan80o=3/81/8\tan{}20^{o}\tan{}40^{o}\tan{}80^{o} = \frac{\sqrt{3}/8}{1/8}

Thereforetan20otan40otan60otan80o=3.3=3\tan 20^{o}\tan 40^{o}\tan 60^{o}\tan 80^{o} = \sqrt{3}.\sqrt{3} = 3