Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

tan(2tan115+sec152+2tan118)\tan⁡(2\tan^{−1}\frac{⁡1}{5}+\sec^{−1}⁡\frac{\sqrt5}{2}+2\tan^{−1}⁡\frac{1}{8})
is equal to :

A

1

B

2

C

14\frac{1}{4}

D

54\frac{5}{4}

Answer

2

Explanation

Solution

tan(2tan115+sec152+2tan118)\tan⁡(2\tan^{−1}⁡\frac{1}{5} + \sec^{−1}\frac{\sqrt⁡5}{2} + 2\tan^{−1}⁡\frac{1}{8})
=tan(2tan1(15+18)(11518)+sec152)=\tan\left(2\tan^{-1}\frac{\left(\frac{1}{5}+\frac{1}{8}\right)}{\left(1-\frac{1}{5}\cdot\frac{1}{8}\right)} + \sec^{-1}{\frac{\sqrt5}{2}}\right)
=tan[2tan1(13)+tan1(12)]=\tan\left[2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right)\right]
=tan[tan123119+tan112]=\tan⁡[\tan^{−1}⁡ \frac{\frac{2}{3}}{1−\frac{1}{9}} + \tan^{−1}⁡\frac{1}{2}]
=tan[tan134+tan112]=\tan⁡[\tan^{−1}⁡ \frac{3}{4} + \tan^{−1} ⁡\frac{1}{2}]
=tan[tan134+12138]=tan[tan15458]=\tan⁡[\tan^{−1} \frac{⁡\frac{3}{4} + \frac{1}{2} }{1−\frac{3}{8}}] = \tan⁡[\tan^{−1} ⁡\frac{\frac{5}{4}}{\frac{5}{8}}]
=tan[tan12]=\tan⁡[\tan^{−1} ⁡2]
= 2
So, the correct is (B): 2