Solveeit Logo

Question

Question: tan ^ 2 (2x+3)...

tan ^ 2 (2x+3)

Answer

12tan(2x+3)x+C\frac{1}{2} \tan(2x+3) - x + C

Explanation

Solution

To find the integral of tan2(2x+3)\tan^2(2x+3), we use the trigonometric identity tan2θ=sec2θ1\tan^2\theta = \sec^2\theta - 1.

Let the given integral be II: I=tan2(2x+3)dxI = \int \tan^2(2x+3) dx

Apply the identity tan2θ=sec2θ1\tan^2\theta = \sec^2\theta - 1 with θ=2x+3\theta = 2x+3: I=(sec2(2x+3)1)dxI = \int (\sec^2(2x+3) - 1) dx

Now, we can split the integral into two parts: I=sec2(2x+3)dx1dxI = \int \sec^2(2x+3) dx - \int 1 dx

For the first integral, sec2(2x+3)dx\int \sec^2(2x+3) dx, we use a substitution. Let u=2x+3u = 2x+3. Differentiating both sides with respect to xx: dudx=2\frac{du}{dx} = 2 du=2dxdu = 2 dx dx=12dudx = \frac{1}{2} du

Substitute uu and dxdx into the first integral: sec2(u)(12)du=12sec2(u)du\int \sec^2(u) \left(\frac{1}{2}\right) du = \frac{1}{2} \int \sec^2(u) du We know that sec2(u)du=tan(u)+C1\int \sec^2(u) du = \tan(u) + C_1. So, the first part of the integral is: 12tan(u)+C1\frac{1}{2} \tan(u) + C_1 Substitute back u=2x+3u = 2x+3: 12tan(2x+3)+C1\frac{1}{2} \tan(2x+3) + C_1

For the second integral, 1dx\int 1 dx: 1dx=x+C2\int 1 dx = x + C_2

Combining both parts: I=(12tan(2x+3)+C1)(x+C2)I = \left(\frac{1}{2} \tan(2x+3) + C_1\right) - (x + C_2) I=12tan(2x+3)x+(C1C2)I = \frac{1}{2} \tan(2x+3) - x + (C_1 - C_2) Let C=C1C2C = C_1 - C_2, which is a new arbitrary constant. I=12tan(2x+3)x+CI = \frac{1}{2} \tan(2x+3) - x + C