Question
Question: tan ^ 2 (2x+3)...
tan ^ 2 (2x+3)
21tan(2x+3)−x+C
Solution
To find the integral of tan2(2x+3), we use the trigonometric identity tan2θ=sec2θ−1.
Let the given integral be I: I=∫tan2(2x+3)dx
Apply the identity tan2θ=sec2θ−1 with θ=2x+3: I=∫(sec2(2x+3)−1)dx
Now, we can split the integral into two parts: I=∫sec2(2x+3)dx−∫1dx
For the first integral, ∫sec2(2x+3)dx, we use a substitution. Let u=2x+3. Differentiating both sides with respect to x: dxdu=2 du=2dx dx=21du
Substitute u and dx into the first integral: ∫sec2(u)(21)du=21∫sec2(u)du We know that ∫sec2(u)du=tan(u)+C1. So, the first part of the integral is: 21tan(u)+C1 Substitute back u=2x+3: 21tan(2x+3)+C1
For the second integral, ∫1dx: ∫1dx=x+C2
Combining both parts: I=(21tan(2x+3)+C1)−(x+C2) I=21tan(2x+3)−x+(C1−C2) Let C=C1−C2, which is a new arbitrary constant. I=21tan(2x+3)−x+C