Solveeit Logo

Question

Question: $\tan^{-1}x, x < 0$ is equal to...

tan1x,x<0\tan^{-1}x, x < 0 is equal to

A

π+cot11x-\pi + \cot^{-1}\frac{1}{x}

B

sin1x1+x2\sin^{-1}\frac{x}{\sqrt{1+x^2}}

C

cos111+x2-\cos^{-1}\frac{1}{\sqrt{1+x^2}}

D

cos111+x2\cos^{-1}\frac{1}{\sqrt{1+x^2}}

Answer

(A), (B), (C)

Explanation

Solution

Let y=tan1xy = \tan^{-1}x. For x<0x < 0, the range of yy is (π2,0)(-\frac{\pi}{2}, 0).

Option (A): For x<0x < 0, 1x<0\frac{1}{x} < 0. The principal value of cot1z\cot^{-1}z for z<0z < 0 lies in (π2,π)(\frac{\pi}{2}, \pi). Thus, for x<0x < 0, cot11x(π2,π)\cot^{-1}\frac{1}{x} \in (\frac{\pi}{2}, \pi). Consequently, π+cot11x(π+π2,π+π)=(π2,0)-\pi + \cot^{-1}\frac{1}{x} \in (-\pi + \frac{\pi}{2}, -\pi + \pi) = (-\frac{\pi}{2}, 0). This range matches the range of tan1x\tan^{-1}x for x<0x < 0. The identity tan1x=π+cot11x\tan^{-1}x = -\pi + \cot^{-1}\frac{1}{x} holds for x<0x < 0.

Option (B): We know that for y=tan1xy = \tan^{-1}x, where π2<y<π2-\frac{\pi}{2} < y < \frac{\pi}{2}, siny=tany1+tan2y=x1+x2\sin y = \frac{\tan y}{\sqrt{1+\tan^2 y}} = \frac{x}{\sqrt{1+x^2}}. Since y(π2,π2)y \in (-\frac{\pi}{2}, \frac{\pi}{2}), y=sin1(x1+x2)y = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right). This identity holds for all real xx. For x<0x < 0, x1+x2(1,0)\frac{x}{\sqrt{1+x^2}} \in (-1, 0), so sin1x1+x2(π2,0)\sin^{-1}\frac{x}{\sqrt{1+x^2}} \in (-\frac{\pi}{2}, 0), matching the range of tan1x\tan^{-1}x.

Option (C): For y=tan1xy = \tan^{-1}x, cosy=11+tan2y=11+x2\cos y = \frac{1}{\sqrt{1+\tan^2 y}} = \frac{1}{\sqrt{1+x^2}} for y(π2,π2)y \in (-\frac{\pi}{2}, \frac{\pi}{2}). Since x<0x < 0, y(π2,0)y \in (-\frac{\pi}{2}, 0). Let z=yz = -y. Then z(0,π2)z \in (0, \frac{\pi}{2}). cosz=cos(y)=cosy=11+x2\cos z = \cos(-y) = \cos y = \frac{1}{\sqrt{1+x^2}}. Since z(0,π2)z \in (0, \frac{\pi}{2}), z=cos1(11+x2)z = \cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right). Substituting z=yz = -y, we get y=cos1(11+x2)-y = \cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right), which means y=cos1(11+x2)y = -\cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right). This identity holds for x0x \le 0. For x<0x < 0, 11+x2(0,1)\frac{1}{\sqrt{1+x^2}} \in (0, 1), so cos111+x2(0,π2)\cos^{-1}\frac{1}{\sqrt{1+x^2}} \in (0, \frac{\pi}{2}). Thus, cos111+x2(π2,0)-\cos^{-1}\frac{1}{\sqrt{1+x^2}} \in (-\frac{\pi}{2}, 0), matching the range of tan1x\tan^{-1}x.

Option (D): For x<0x < 0, cos111+x2(0,π2)\cos^{-1}\frac{1}{\sqrt{1+x^2}} \in (0, \frac{\pi}{2}), which does not match the range of tan1x\tan^{-1}x for x<0x < 0, which is (π2,0)(-\frac{\pi}{2}, 0). Thus, option (D) is incorrect.