Solveeit Logo

Question

Question: $\tan^{-1}\tan x$ where $x \in [\frac{2027\pi}{2},\frac{2029\pi}{2}]$...

tan1tanx\tan^{-1}\tan x where x[2027π2,2029π2]x \in [\frac{2027\pi}{2},\frac{2029\pi}{2}]

Answer

x-1014\pi

Explanation

Solution

We know that

tan1(tanx)=xnπ,  where n is chosen so that xnπ(π2,π2).\tan^{-1}(\tan x)=x-n\pi,\; \text{where } n \text{ is chosen so that } x-n\pi\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right).

Given x[2027π2,2029π2]x\in \left[\frac{2027\pi}{2},\,\frac{2029\pi}{2}\right], note that:

2027π2=1013.5πand2029π2=1014.5π.\frac{2027\pi}{2}=1013.5\pi \quad \text{and} \quad \frac{2029\pi}{2}=1014.5\pi.

Choosing n=1014n=1014 gives:

x1014π[1013.5π1014π,  1014.5π1014π]=[π2,π2].x-1014\pi\in\left[1013.5\pi-1014\pi,\; 1014.5\pi-1014\pi\right] = \left[-\frac{\pi}{2},\frac{\pi}{2}\right].

Thus, for every xx in the interval, we have:

tan1(tanx)=x1014π.\tan^{-1}(\tan x)=x-1014\pi.

Since tan is periodic with period π\pi, select n=1014n=1014 such that x1014π[π2,π2]x-1014\pi \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]. Therefore,

tan1(tanx)=x1014π.\tan^{-1}(\tan x)=x-1014\pi.