Solveeit Logo

Question

Question: $\tan^{-1}\frac{1}{\sqrt{x^2-1}}=$...

tan11x21=\tan^{-1}\frac{1}{\sqrt{x^2-1}}=

A

π2+cosec1x\frac{\pi}{2} + \operatorname{cosec}^{-1}x

B

π2+sec1x\frac{\pi}{2} + \sec^{-1}x

C

cosec1x\operatorname{cosec}^{-1}x

D

sec1x\sec^{-1}x

Answer

cosec1x\operatorname{cosec}^{-1}x

Explanation

Solution

Let the expression be y=tan11x21y = \tan^{-1}\frac{1}{\sqrt{x^2-1}}. The domain of the expression is x>1|x| > 1.

Case 1: x>1x > 1. Substitute x=secθx = \sec\theta, where θ(0,π/2)\theta \in (0, \pi/2). y=tan11sec2θ1=tan11tan2θ=tan11tanθ=tan1(cotθ)=tan1(tan(π/2θ))y = \tan^{-1}\frac{1}{\sqrt{\sec^2\theta-1}} = \tan^{-1}\frac{1}{\sqrt{\tan^2\theta}} = \tan^{-1}\frac{1}{\tan\theta} = \tan^{-1}(\cot\theta) = \tan^{-1}(\tan(\pi/2 - \theta)). Since θ(0,π/2)\theta \in (0, \pi/2), π/2θ(0,π/2)\pi/2 - \theta \in (0, \pi/2), which is in the range of tan1\tan^{-1}. So, y=π/2θy = \pi/2 - \theta. Since x=secθx = \sec\theta, θ=sec1x\theta = \sec^{-1}x. y=π/2sec1xy = \pi/2 - \sec^{-1}x. For x>1x > 1, cosec1x+sec1x=π/2\operatorname{cosec}^{-1}x + \sec^{-1}x = \pi/2, so π/2sec1x=cosec1x\pi/2 - \sec^{-1}x = \operatorname{cosec}^{-1}x. Thus, for x>1x > 1, y=cosec1xy = \operatorname{cosec}^{-1}x.

Case 2: x<1x < -1. Substitute x=secθx = \sec\theta, where θ(π/2,π)\theta \in (\pi/2, \pi). y=tan11sec2θ1=tan11tan2θ=tan11tanθ=tan1(cotθ)=tan1(tan(θπ/2))y = \tan^{-1}\frac{1}{\sqrt{\sec^2\theta-1}} = \tan^{-1}\frac{1}{\sqrt{\tan^2\theta}} = \tan^{-1}\frac{1}{-\tan\theta} = \tan^{-1}(-\cot\theta) = \tan^{-1}(\tan(\theta - \pi/2)). Since θ(π/2,π)\theta \in (\pi/2, \pi), θπ/2(0,π/2)\theta - \pi/2 \in (0, \pi/2), which is in the range of tan1\tan^{-1}. So, y=θπ/2y = \theta - \pi/2. Since x=secθx = \sec\theta, θ=sec1x\theta = \sec^{-1}x. y=sec1xπ/2y = \sec^{-1}x - \pi/2. For x<1x < -1, cosec1x+sec1x=π/2\operatorname{cosec}^{-1}x + \sec^{-1}x = \pi/2, so π/2sec1x=cosec1x\pi/2 - \sec^{-1}x = \operatorname{cosec}^{-1}x, or sec1xπ/2=cosec1x\sec^{-1}x - \pi/2 = -\operatorname{cosec}^{-1}x. Thus, for x<1x < -1, y=cosec1xy = -\operatorname{cosec}^{-1}x.

Since option (c) cosec1x\operatorname{cosec}^{-1}x matches the result for x>1x > 1, and is one of the given options, we choose it, assuming the question implicitly refers to the case x>1x > 1 or accepts partial matching.