Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

tan1(tan3π4)\tan^{-1}\left(\tan\frac{3\pi}{4}\right) is equal to

A

π4\frac{\pi}{4}

B

π4-\frac{\pi}{4}

C

3π4\frac{3\pi}{4}

D

none of these.

Answer

π4-\frac{\pi}{4}

Explanation

Solution

tan1(tan3π4)=tan1(tan(ππ4))tan^{-1} \left(tan \frac{3\pi}{4}\right) = tan^{-1} \left(tan \left(\pi-\frac{\pi}{4}\right)\right) =tan1(tanπ4)= tan^{-1}\left(-tan \frac{\pi}{4}\right) =tan1(tan(π4)) = tan^{-1} \left(tan\left(-\frac{\pi}{4}\right)\right) =π4= -\frac{\pi}{4} [tan1(tanθ)=θifπ2θπ2]\left[\because tan^{-1}\left(tan\,\theta \right)= \theta\, {\text{if}} -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right]