Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

tan1(1x+y)+tan1(yx2+xy+1)=\tan^{-1} \left(\frac{1}{x+y} \right) +\tan ^{-1}\left(\frac{y}{x^{2} +xy +1}\right)=

A

tan1x\tan^{-1} x

B

cot1x\cot^{-1} x

C

tan1y\tan^{-1} y

D

cot1y\cot^{-1} y

Answer

cot1x\cot^{-1} x

Explanation

Solution

tan1(1x+y)+tan1(yx2+xy+1)\tan^{-1} \left(\frac{1}{x+y} \right) +\tan^{-1}\left(\frac{y}{x^{2} +xy +1}\right)
=tan1[1x+y+yx2+xy+111(x+y)y(x2+xy+1)]= \tan ^{-1}\left[\frac{\frac{1}{x+y} + \frac{y}{x^{2 }+xy +1}}{1- \frac{1}{\left(x+y\right)} \frac{y}{\left(x^{2} +xy +1\right)}}\right]
=tan1[x2+xy+1+xy+y2x3+x2y+x+yx2+xy2+yy]= \tan^{-1} \left[\frac{x^{2} +xy +1 +xy +y^{2}}{x^{3} +x^{2} y + x+yx^{2} +xy^{2} +y -y}\right]
=tan1[x2+2xy+y2+1x(x2+2xy+y2+1)]= \tan^{-1} \left[\frac{x^{2} +2xy +y^{2} +1}{x\left(x^{2} +2xy +y^{2} +1\right)}\right]
=tan11x=cot1x=\tan ^{-1} \frac{1}{x} =\cot^{-1} x