Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

tan113+tan117+tan1118+.........+tan1(1n2+n+1)+....to\tan^{-1}\frac{1}{3}+\tan^{-1}\frac{1}{7}+\tan^{-1}\frac{1}{18}+.........+\tan^{-1}\left(\frac{1}{n^2+n+1}\right)+....to\infty is equal to

A

π2\frac{\pi}{2}

B

π4\frac{\pi}{4}

C

2π3\frac{2\pi}{3}

D

0

Answer

π4\frac{\pi}{4}

Explanation

Solution

Tn=tan11n2+n+1T_{n} = tan^{-1} \frac{1}{n^{2}+n+1}
=tan111+n(n+1)= tan^{-1} \frac{1}{1+n\left(n+1\right)}
=tan1[(n+1)n1+(n+1)n]= tan^{-1}\left[\frac{\left(n+1\right)-n}{1+\left(n+1\right)n}\right]
=tan1(n+1)tan1(n)= tan^{-1} \left(n+1\right)-tan^{-1}\left(n\right)
Now T1=tan12tan11T_{1} = tan^{-1} 2 - tan^{-1}1
T2=tan13tan12T_{2} = tan^{-1}3 -tan^{-1}2
T3=tan14tan13T_{3} = tan^{-1}4-tan^{-1}3
\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots
\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots
Tn=tan1(n+1)tan1nT_{n} = tan^{-1}\left(n+1\right)-tan^{-1} n
T1+T2+..............+Tn\therefore T_{1}+T_{2}+..............+T_{n}
=tan1(n+1)tan11=tan^{-1}\left(n+1\right)-tan^{-1}1
=tan1n+111+(n+1)1=tan1nn+2= tan^{-1} \frac{n+1-1}{1+\left(n+1\right)1} = tan^{-1} \frac{n}{n+2}
Let nn \rightarrow \infty
T1+T2+..........\therefore T_{1}+T_{2}+..........\infty
=limn[tan111+2n]= \displaystyle \lim_{n\rightarrow\infty} \left[tan^{-1} \frac{1}{1+\frac{2}{n}}\right]
=tan11=π4= tan^{-1}1 = \frac{\pi}{4}
Hence reqd. sum =π4= \frac{\pi}{4}