Question
Mathematics Question on Inverse Trigonometric Functions
tan−131+tan−171+tan−1181+.........+tan−1(n2+n+11)+....to∞ is equal to
A
2π
B
4π
C
32π
D
0
Answer
4π
Explanation
Solution
Tn=tan−1n2+n+11
=tan−11+n(n+1)1
=tan−1[1+(n+1)n(n+1)−n]
=tan−1(n+1)−tan−1(n)
Now T1=tan−12−tan−11
T2=tan−13−tan−12
T3=tan−14−tan−13
………………………
………………………
Tn=tan−1(n+1)−tan−1n
∴T1+T2+..............+Tn
=tan−1(n+1)−tan−11
=tan−11+(n+1)1n+1−1=tan−1n+2n
Let n→∞
∴T1+T2+..........∞
=n→∞lim[tan−11+n21]
=tan−11=4π
Hence reqd. sum =4π