Solveeit Logo

Question

Question: $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$, then x =...

tan12x+tan13x=π4\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}, then x =

A

-1

B

13\frac{1}{3}

C

16\frac{1}{6}

D

12\frac{1}{2}

Answer

16\frac{1}{6}

Explanation

Solution

To solve the equation tan12x+tan13x=π4\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}, we use the formula for the sum of arctangents:

tan1a+tan1b=tan1(a+b1ab)\tan^{-1} a + \tan^{-1} b = \tan^{-1}\left(\frac{a+b}{1-ab}\right)

In this case, a=2xa = 2x and b=3xb = 3x. Substituting these values into the formula, we get:

tan1(2x+3x16x2)=π4\tan^{-1}\left(\frac{2x+3x}{1-6x^2}\right) = \frac{\pi}{4}

Since tan(π4)=1\tan\left(\frac{\pi}{4}\right) = 1, we have:

5x16x2=1\frac{5x}{1-6x^2} = 1

Now, we solve the equation:

5x=16x25x = 1 - 6x^2 6x2+5x1=06x^2 + 5x - 1 = 0

Using the quadratic formula:

x=5±5246(1)26=5±25+2412=5±712x = \frac{-5 \pm \sqrt{5^2 - 4\cdot 6\cdot (-1)}}{2\cdot 6} = \frac{-5 \pm \sqrt{25 + 24}}{12} = \frac{-5 \pm 7}{12}

This gives us two possible solutions:

x=212=16x = \frac{2}{12} = \frac{1}{6} or x=1212=1x = \frac{-12}{12} = -1

We need to check the validity of these solutions.

For x=16x = \frac{1}{6}, (2x)(3x)=1312=16<1(2x)(3x) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6} < 1, which satisfies the condition for the arctangent sum formula.

For x=1x = -1, (2(1))(3(1))=6>1(2(-1))(3(-1)) = 6 > 1, and substituting in the original expression does not yield π4\frac{\pi}{4}.

Therefore, the valid solution is x=16x = \frac{1}{6}.