Question
Question: \(\tan^{- 1}\frac{1}{3} + \tan^{- 1}\frac{2}{9} + \tan^{- 1}\frac{4}{33} + ..........\infty\) =...
tan−131+tan−192+tan−1334+..........∞ =
A
π/4
B
π/2
C
π
D
None
Answer
π/4
Explanation
Solution
Let θ=cosec−1(n2+1)(n2+2n+2)
⇒ cosec2θ = (n2+1)(n2+2n+2)
=(n2+1)(n2+1+2n+1)
=(n2+1)2+2n(n2+1)+(n2)+1 =(n2+n+1)2+1
⇒ cot2θ = (n2+n+1)2
⇒tanθ=n2+n+11=1+(n+1)n(n+1)−n⇒θ=tan−1[1+(n+1)n(n+1)−n]=tan−1(n+1)−tan−1nThus, sum to n terms of the given series.
=(tan−12−tan−11)+(tan−13−tan−12)
+(tan−14−tan−13+........+[tan−1(n+1)−tan−1n])
= tan−1(n+1)−tan−11=tan−1(n+1)−4π