Solveeit Logo

Question

Question: Take the z-axis as vertical and the xy plane as horizontal. A particle A is projected at 4Ö2 m/s at ...

Take the z-axis as vertical and the xy plane as horizontal. A particle A is projected at 4Ö2 m/s at an angle of 450 to the horizontal, in the xz plane. Particle B is projected at 5 m/s at an angle q = tan–1(4/3) to the y-axis, in the yz plane. Which of the following is not correct for the velocity of B with respect to A?

A

Its initial magnitude is 5 m/s.

B

Its magnitude will change with time.

C

It lies in the xy plane

D

It will initially make an angle (q + p/2) with the positive x-axis

Answer

Its magnitude will change with time.

Explanation

Solution

vA=42\overrightarrow { \mathrm { v } } _ { \mathrm { A } } = 4 \sqrt { 2 } cos 45º i^\hat { \mathbf { i } } + 424 \sqrt { 2 } sin 45j^45 ^ { \circ } \hat { j } ̃ vA=4i^+4k^\overrightarrow { \mathrm { v } } _ { \mathrm { A } } = 4 \hat { \mathrm { i } } + 4 \hat { \mathrm { k } }

vB=5cosθj^+5sinθk^\overrightarrow { \mathrm { v } } _ { \mathrm { B } } = 5 \cos \theta \hat { \mathrm { j } } + 5 \sin \theta \hat { \mathrm { k } } = 3j^+4k^3 \hat { j } + 4 \hat { k }

vB/A=vBvA=3j^4i^\overrightarrow { \mathrm { v } } _ { \mathrm { B } / \mathrm { A } } = \overrightarrow { \mathrm { v } } _ { \mathrm { B } } - \overrightarrow { \mathrm { v } } _ { \mathrm { A } } = 3 \hat { \mathrm { j } } - 4 \hat { \mathrm { i } } , aB/A=aBaA\overrightarrow { \mathrm { a } } _ { \mathrm { B } / \mathrm { A } } = \overrightarrow { \mathrm { a } } _ { \mathrm { B } } - \overrightarrow { \mathrm { a } } _ { \mathrm { A } }

= – gk^(gk^)=0g \hat { k } - ( - g \hat { k } ) = 0