Solveeit Logo

Question

Question: Take the mean distance of the moon and the sun from earth to be \[4 \times {10^5}\,{\text{km}}\] and...

Take the mean distance of the moon and the sun from earth to be 4×105km4 \times {10^5}\,{\text{km}} and 150×106km150 \times {10^6}\,{\text{km}} respectively. Their masses are 8×1022kg8 \times {10^{22}}\,{\text{kg}} and 2×1030kg2 \times {10^{30}}\,{\text{kg}} respectively. The radius of the earth is. Let F1{F_1} be the difference in the forces exerted by the moon at the nearest and farthest point on the earth and F2{F_2} be difference in the force exerted by the sun at the nearest and farthest points on the earth. Then the number closest to F1F2\dfrac{{{F_1}}}{{{F_2}}} is:
A. 0.01
B. 2
C. 0.6
D. 6

Explanation

Solution

Use the expression for Newton’s law of gravitation. Using this formula, derive the expressions for the gravitational force of attraction between the earth and moon and the earth and sun at nearest and farthest points. Substitute these values in the given relation and calculate the required ratio.

Formula used:
The expression for Newton’s law of gravitation is
F=Gm1m2r2F = \dfrac{{G{m_1}{m_2}}}{{{r^2}}} …… (1)
Here, FF is the force of attraction between the two objects, GG is the universal gravitational constant, m1{m_1} and m2{m_2} are masses of the two objects and rr is the distance between the centres of the two objects.

Complete step by step answer:
We have given that the mean distance between the moon and earth is 4×105km4 \times {10^5}\,{\text{km}} and the mean distance between the sun and earth is 150×106km150 \times {10^6}\,{\text{km}}.
d1=4×105km{d_1} = 4 \times {10^5}\,{\text{km}}
d2=150×106km\Rightarrow{d_2} = 150 \times {10^6}\,{\text{km}}
The masses of moon and the sun are 8×1022kg8 \times {10^{22}}\,{\text{kg}} and 2×1030kg2 \times {10^{30}}\,{\text{kg}} respectively.
mM=8×1022kg{m_M} = 8 \times {10^{22}}\,{\text{kg}}
mS=2×1030kg\Rightarrow{m_S} = 2 \times {10^{30}}\,{\text{kg}}

Let F1N{F_{1N}} be the force of attraction between the moon and the earth at the nearest point on the earth and F1F{F_{1F}} be the force of attraction between the moon and the earth at the farthest point on the earth.Let d1{d_1} be the nearest distance between the moon and the earth.Hence, the force F1{F_1} becomes
F1=F1NF1F{F_1} = {F_{1N}} - {F_{1F}}
F1=GmEmMd12GmEmM(d1+R)2\Rightarrow {F_1} = \dfrac{{G{m_E}{m_M}}}{{d_1^2}} - \dfrac{{G{m_E}{m_M}}}{{{{\left( {{d_1} + R} \right)}^2}}}
Here, RR is the radius of the earth.

Let F2N{F_{2N}} be the force of attraction between the sun and the earth at the nearest point on the earth and F2F{F_{2F}} be the force of attraction between the sun and the earth at the farthest point on the earth.Let d2{d_2} be the nearest distance between the sun and the earth.Hence, the force F2{F_2} becomes
F2=F2NF2F{F_2} = {F_{2N}} - {F_{2F}}
F2=GmEmSd22GmEmS(d2+R)2\Rightarrow {F_2} = \dfrac{{G{m_E}{m_S}}}{{d_2^2}} - \dfrac{{G{m_E}{m_S}}}{{{{\left( {{d_2} + R} \right)}^2}}}

Let us now calculate the ratio F1F2\dfrac{{{F_1}}}{{{F_2}}}.
F1F2=GmEmMd12GmEmM(d1+R)2GmEmSd22GmEmS(d2+R)2\dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{\dfrac{{G{m_E}{m_M}}}{{d_1^2}} - \dfrac{{G{m_E}{m_M}}}{{{{\left( {{d_1} + R} \right)}^2}}}}}{{\dfrac{{G{m_E}{m_S}}}{{d_2^2}} - \dfrac{{G{m_E}{m_S}}}{{{{\left( {{d_2} + R} \right)}^2}}}}}
F1F2=GmEmM[1d121(d1+R)2]GmEmS[1d221(d2+R)2]\Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{G{m_E}{m_M}\left[ {\dfrac{1}{{d_1^2}} - \dfrac{1}{{{{\left( {{d_1} + R} \right)}^2}}}} \right]}}{{G{m_E}{m_S}\left[ {\dfrac{1}{{d_2^2}} - \dfrac{1}{{{{\left( {{d_2} + R} \right)}^2}}}} \right]}}
F1F2=mM[d12d12+2d1R+R2d12(d1+R)2]mS[d22d22+2d2RR2d22(d2+R)2]\Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{{d_1^2 - d_1^2 + 2{d_1}R + {R^2}}}{{d_1^2{{\left( {{d_1} + R} \right)}^2}}}} \right]}}{{{m_S}\left[ {\dfrac{{d_2^2 - d_2^2 + 2{d_2}R - {R^2}}}{{d_2^2{{\left( {{d_2} + R} \right)}^2}}}} \right]}}
F1F2=mM[2d1R+R2d12(d1+R)2]mS[2d2RR2d22(d2+R)2]\Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{{2{d_1}R + {R^2}}}{{d_1^2{{\left( {{d_1} + R} \right)}^2}}}} \right]}}{{{m_S}\left[ {\dfrac{{2{d_2}R - {R^2}}}{{d_2^2{{\left( {{d_2} + R} \right)}^2}}}} \right]}}

We know that R<<d1R < < {d_1} and R<<d2R < < {d_2}. So we can neglect RR.
F1F2=mM[2d1Rd12d12]mS[2d2Rd22d22]\Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{{2{d_1}R}}{{d_1^2d_1^2}}} \right]}}{{{m_S}\left[ {\dfrac{{2{d_2}R}}{{d_2^2d_2^2}}} \right]}}
F1F2=mM[1d13]mS[1d23]\Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}\left[ {\dfrac{1}{{d_1^3}}} \right]}}{{{m_S}\left[ {\dfrac{1}{{d_2^3}}} \right]}}
F1F2=mMmS×d23d13\Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}}}{{{m_S}}} \times \dfrac{{d_2^3}}{{d_1^3}}
F1F2=mMmS×(d2d1)3\Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{{m_M}}}{{{m_S}}} \times {\left( {\dfrac{{{d_2}}}{{{d_1}}}} \right)^3}

Substitute 4×105km4 \times {10^5}\,{\text{km}} for d1{d_1}, 150×106km150 \times {10^6}\,{\text{km}} for d2{d_2}, 8×1022kg8 \times {10^{22}}\,{\text{kg}} for mM{m_M} and 2×1030kg2 \times {10^{30}}\,{\text{kg}} for mS{m_S} in the above equation.
F1F2=8×1022kg2×1030kg×(150×106km4×105km)3\Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{8 \times {{10}^{22}}\,{\text{kg}}}}{{2 \times {{10}^{30}}\,{\text{kg}}}} \times {\left( {\dfrac{{150 \times {{10}^6}\,{\text{km}}}}{{4 \times {{10}^5}\,{\text{km}}}}} \right)^3}
F1F2=8×1022kg2×1030kg×(150×109m4×108m)3\Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = \dfrac{{8 \times {{10}^{22}}\,{\text{kg}}}}{{2 \times {{10}^{30}}\,{\text{kg}}}} \times {\left( {\dfrac{{150 \times {{10}^9}\,{\text{m}}}}{{4 \times {{10}^8}\,{\text{m}}}}} \right)^3}
F1F2=2.1\Rightarrow \dfrac{{{F_1}}}{{{F_2}}} = 2.1
F1F22\therefore \dfrac{{{F_1}}}{{{F_2}}} \approx 2
Therefore, the number closest to F1F2\dfrac{{{F_1}}}{{{F_2}}} is 2.

Hence, the correct option is B.

Note: The students should keep in mind that the radius of the earth is very small compared to the mean distance between the earth and moon and mean distance between the earth and sun. Hence, we have neglected or eliminated the terms including radius of the earth from the calculations and there will be no large difference in the final answer due to this elimination.