Solveeit Logo

Question

Question: Table 1−7 shows some old measures of liquid volume: To complete the table, what numbers (to three si...

Table 1−7 shows some old measures of liquid volume: To complete the table, what numbers (to three significant figures) should be entered in each column.
The volume of one bag is equal to 0.1091 m30.1091~{{m}^{3}}. If an old story has a witch cooking up some vile liquid in a cauldron of volume 1.5\text{1}\text{.5} chaldrons, what is the volume in cubic meters?

| Wey| chaldron| bag| pottle| gill
---|---|---|---|---|---
1 wey 1 chaldron1 bag 1 pottle 1 gill | 1\text{1}| 109\dfrac{\text{10}}{\text{9}}| 403\dfrac{\text{40}}{\text{3}}| 640\text{640}| 120240 \text{120240 }

Explanation

Solution

In the first row the volume of each liquid in one wey has given. We can equate the given volumes with each other to find the volume of each ingredient. And from the volume of the bag given, we can find the new volume of chaldron.

Complete step by step answer:
Given that,
1 wey=109 chaldron= 403 bag= 640 pottle = 120240 gill\text{1 wey=}\dfrac{\text{10}}{\text{9}}\text{ chaldron= }\dfrac{\text{40}}{\text{3}}\text{ bag= 640 pottle = 120240 gill}
In the first column,
1wey = 109chaldron1chaldron = 0.9wey\text{1wey = }\dfrac{\text{10}}{\text{9}}\text{chaldron}\Rightarrow \text{1chaldron = 0}\text{.9wey}
1wey = 403bag1bag =0.075wey\text{1wey = }\dfrac{\text{40}}{\text{3}}\text{bag}\Rightarrow \text{1bag =}0.075\text{wey}
1wey = 640 pottle 1pottle =1.57×103wey\text{1wey = 640 pottle }\Rightarrow \text{1pottle =1}\text{.57}\times \text{1}{{\text{0}}^{-3}}\text{wey}
1wey = 120240 gill1gill =8.31×106wey\text{1wey = 120240 gill}\Rightarrow \text{1gill =8}\text{.31}\times \text{1}{{\text{0}}^{-6}}wey
In the second column,
109chaldron=403bag 1 bag =30360=8.33×102chaldron\dfrac{10}{9}\text{chaldron=}\dfrac{40}{3}\text{bag }\Rightarrow \text{1 bag =}\dfrac{\text{30}}{\text{360}}\text{=8}\text{.33}\times \text{1}{{\text{0}}^{-2}}\text{chaldron}
109 chaldron=640 pottle1 pottle=105760=1.73×103haldron\dfrac{10}{9}\text{ chaldron}=640\text{ pottle}\Rightarrow \text{1 pottle=}\dfrac{\text{10}}{\text{5760}}\text{=1}\text{.73}\times \text{1}{{\text{0}}^{-3}}\text{haldron}
109chaldron = 120240 gill1 gill=9.24×106chaldron\dfrac{\text{10}}{\text{9}}\text{chaldron = 120240 gill}\Rightarrow \text{1 gill=9}\text{.24}\times \text{1}{{\text{0}}^{-6}}\text{chaldron}
In the third column,
1 bag =112chaldron1 chaldron = 12 bag\text{1 bag =}\dfrac{\text{1}}{\text{12}}\text{chaldron}\Rightarrow \text{1 chaldron = 12 bag}
403bag =640 pottle  1 pottle=401920=2.08×102bag\dfrac{\text{40}}{\text{3}}\text{bag =640 pottle }\Rightarrow \text{ 1 pottle=}\dfrac{\text{40}}{\text{1920}}\text{=2}\text{.08}\times \text{1}{{\text{0}}^{-2}}\text{bag}
403bag =120240 gill 1 gill =40!!×!! 120240=1.11×104bag\dfrac{\text{40}}{\text{3}}\text{bag =120240 gill }\Rightarrow \text{1 gill =}\dfrac{\text{40}}{\text{3 }\\!\\!\times\\!\\!\text{ 120240}}\text{=1}\text{.11}\times \text{1}{{\text{0}}^{-4}}\text{bag}
In the fourth column,
1 pottle=1576chaldron1 chadron = 576 pottle\text{1 pottle=}\dfrac{\text{1}}{576}\text{chaldron}\Rightarrow \text{1 chadron = 576 pottle}
1 pottle =148bag1 bag = 48 pottle\text{1 pottle =}\dfrac{\text{1}}{\text{48}}\text{bag}\Rightarrow \text{1 bag = 48 pottle}
640 pottle = 120240 gill 1 gill=640120240=5.32×103pottle\text{640 pottle = 120240 gill }\Rightarrow \text{1 gill=}\dfrac{\text{640}}{\text{120240}}\text{=5}\text{.32}\times \text{1}{{\text{0}}^{-3}}\text{pottle}
In the fifth column,
1 gill=11.08 !!×!! 105chaldron1chaldron =1.08 !!×!! 105gill\text{1 gill=}\dfrac{1}{\text{1}\text{.08 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{5}}}}\text{chaldron}\Rightarrow \text{1chaldron =1}\text{.08 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{5}}}\text{gill}
1 gill =19.01 !!×!! 103bag 1 bag = 9.01 !!×!! 104gill\text{1 gill =}\dfrac{\text{1}}{\text{9}\text{.01 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{3}}}\text{bag}\Rightarrow \text{ 1 bag = 9}\text{.01 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{4}}}\text{gill}
1 gill=81503pottle1 pottle =188gill\text{1 gill=}\dfrac{\text{8}}{\text{1503}}\text{pottle}\Rightarrow \text{1 pottle =}188\text{gill}
Given that,
Volume of bag= 0.1091 !! !! m3\text{= 0}\text{.1091 }\\!\\!~\\!\\!\text{ }{{\text{m}}^{\text{3}}}
Then,
1.5 chaldron =1.5×12 =18bag\text{1}\text{.5 chaldron =1}\text{.5}\times \text{12 =18bag}
Since, each bag is  0.1091 !! !! m3\text{ 0}\text{.1091 }\\!\\!~\\!\\!\text{ }{{\text{m}}^{\text{3}}}
1.5 !! !! chaldron !! !! =(18)(0.1091)=1.96 !! !! m3\text{1}\text{.5 }\\!\\!~\\!\\!\text{ chaldron }\\!\\!~\\!\\!\text{ =}\left( \text{18} \right)\left( \text{0}\text{.1091} \right)\text{=1}\text{.96 }\\!\\!~\\!\\!\text{ }{{\text{m}}^{\text{3}}}

Note:
Important points to remember while determining number of significant figure:
Change of units should not change the number of significant digits.
Use scientific notation to report measurements. Numbers should be expressed in powers of 10\text{10} like a×10ba\times {{10}^{b}} where b\text{b} which is called as the order of magnitude.
Dividing or multiplying of exact numbers can have an infinite number of significant digits.