Solveeit Logo

Question

Question: If $\alpha_1 < \alpha_2 < \alpha_3 < \alpha_4 < \alpha_5 < \alpha_6$, then the equation $(x - \alpha...

If α1<α2<α3<α4<α5<α6\alpha_1 < \alpha_2 < \alpha_3 < \alpha_4 < \alpha_5 < \alpha_6, then the equation (xα1)(xα3)(xα5)+3(xα2)(xα4)(xα6)=0(x - \alpha_1)(x - \alpha_3)(x - \alpha_5) + 3(x - \alpha_2)(x - \alpha_4)(x - \alpha_6) = 0 has :-

A

no real root in (α5,α6)(\alpha_5, \alpha_6)

B

no real root in (α1,α2)(\alpha_1, \alpha_2)

C

all roots are imaginary

D

no real root in (,α1)(-\infty, \alpha_1)

Answer

(D) no real root in (,α1)(-\infty, \alpha_1).

Explanation

Solution

Explanation:
Let

f(x)=(xα1)(xα3)(xα5)+3(xα2)(xα4)(xα6)f(x)=(x-\alpha_1)(x-\alpha_3)(x-\alpha_5)+3(x-\alpha_2)(x-\alpha_4)(x-\alpha_6)

Evaluate f(x)f(x) at the points where one of the factors becomes zero:

  1. At x=α1x=\alpha_1:

    f(α1)=0+3(α1α2)(α1α4)(α1α6)f(\alpha_1)=0+3(\alpha_1-\alpha_2)(\alpha_1-\alpha_4)(\alpha_1-\alpha_6)

    Since α1<α2,α4,α6\alpha_1<\alpha_2, \alpha_4, \alpha_6, each difference is negative so their product is negative. Thus, f(α1)<0f(\alpha_1)<0.

  2. At x=α2x=\alpha_2:

    f(α2)=(α2α1)(α2α3)(α2α5)+0f(\alpha_2)=(\alpha_2-\alpha_1)(\alpha_2-\alpha_3)(\alpha_2-\alpha_5)+0

    Here (α2α1)>0(\alpha_2-\alpha_1)>0 and (α2α3),(α2α5)<0(\alpha_2-\alpha_3), (\alpha_2-\alpha_5)<0. The product of one positive and two negatives is positive. Hence, f(α2)>0f(\alpha_2)>0.
    By the Intermediate Value Theorem, there is a root in (α1,α2)(\alpha_1,\alpha_2).

  3. Similarly, one finds a sign change (and hence a root) in (α3,α4)(\alpha_3,\alpha_4) and in (α5,α6)(\alpha_5,\alpha_6).

  4. For x<α1x<\alpha_1, all factors (xαi)(x-\alpha_i) are negative. Thus, each product (being the product of three negatives) is negative. Their sum is negative, and no sign change occurs from -\infty to α1\alpha_1.