Solveeit Logo

Question

Question: If $(p \land \sim r) \implies (q \lor r)$ is false and q and r are both false, then p is...

If (pr)    (qr)(p \land \sim r) \implies (q \lor r) is false and q and r are both false, then p is

A

True

B

False

Answer

True

Explanation

Solution

For an implication A    BA \implies B to be false, AA must be true and BB must be false.

Given:

(pr)    (qr)is false, withq=falseandr=false.(p \land \sim r) \implies (q \lor r) \quad \text{is false, with} \quad q = \text{false} \quad \text{and} \quad r = \text{false}.
  1. Since q=falseq = \text{false} and r=falser = \text{false}, the consequent becomes:

    qr=false.q \lor r = \text{false}.
  2. For the implication to be false, the antecedent must be true:

    pris true.p \land \sim r \quad \text{is true}.

    With r=falser = \text{false}, we have r=true\sim r = \text{true}. Therefore:

    ptrue=pmust be true.p \land \text{true} = p \quad \text{must be true}.

Thus, pp must be true.