Solveeit Logo

Question

Mathematics Question on Limits

Tlimx0+\displaystyle\lim_{x \to 0+} (xnlnx),n>0\left(x^{n} \,ln\, x\right), n > 0

A

does not exist

B

exists and is zero

C

exists and is 1

D

exists and is e1e^{-1}

Answer

exists and is zero

Explanation

Solution

limx0+\displaystyle\lim_{x \to 0+} nx1xn().\frac{\ell nx}{\frac{1}{x^{n}}}\left(\frac{\infty}{\infty}\right). Applying LH rule
limx0+1xnxn+1=0\Rightarrow\, \displaystyle\lim_{x \to 0+} \frac{\frac{1}{x}}{\frac{-n}{x^{n+1}}} = 0