Solveeit Logo

Question

Physics Question on simple harmonic motion

T1,T2T_1,T_2 are time periods of oscillation of a block individually suspended to spring of force constants K1,K2K_1,K_2 respectively same block is suspended to parallel combination of same two springs. Its time period is

A

T1+T2T_1+T_2

B

T1+T22\frac{T_1+T_2}{2}

C

T1T2T1+T2\frac{T_1T_2}{T_1+T_2}

D

T1T2T12+T22\frac{T_1T_2}{\sqrt{T^2_1+T_2^2}}

Answer

T1T2T12+T22\frac{T_1T_2}{\sqrt{T^2_1+T_2^2}}

Explanation

Solution

for a parallel combination k=k1+k2k = k _{1}+ k _{2} T=2πmkT =2 \pi \sqrt{\frac{ m }{ k }} =2πm(k1+k2)=2 \pi \sqrt{\frac{ m }{\left( k _{1}+ k _{2}\right)}} T1=2πmk1T _{1}=2 \pi \sqrt{\frac{ m }{ k _{1}}} k1=(2π)2mT12\Rightarrow k _{1}=(2 \pi)^{2} \frac{ m }{ T _{1}^{2}} k2=(2π)2mT22k _{2}=(2 \pi)^{2} \frac{ m }{ T _{2}^{2}} k1+k2=(2π)2(mT12+mT22)k _{1}+ k _{2}=(2 \pi)^{2}\left(\frac{ m }{ T _{1}^{2}}+\frac{ m }{ T _{2}^{2}}\right) T1T2T1+T2=T\therefore \frac{ T _{1} T _{2}}{\sqrt{ T _{1}+ T _{2}}}= T