Solveeit Logo

Question

Question: rth term in the expansion of $(a+2x)^n$ is ...

rth term in the expansion of (a+2x)n(a+2x)^n is

A

n(n+1)....(nr+1)r!anr+1(2x)r\frac{n(n+1)....(n-r+1)}{r!} a^{n-r+1} (2x)^r

B

n(n+1)....(nr)(r+1)!anrxr\frac{n(n+1)....(n-r)}{(r+1)!} a^{n-r} x^r

C

n(n1)....(n+r)(r1)!anrxr\frac{n(n-1)....(n+r)}{(r-1)!} a^{n-r} x^r

D

n(n1)...(nr+2)(r1)!anr+1(2x)r1\frac{n(n-1)...(n-r+2)}{(r-1)!} a^{n-r+1} (2x)^{r-1}

Answer

n(n1)...(nr+2)(r1)!anr+1(2x)r1\frac{n(n-1)...(n-r+2)}{(r-1)!} a^{n-r+1} (2x)^{r-1}

Explanation

Solution

The general term in the binomial expansion of (X+Y)n(X+Y)^n is given by Tk+1=(nk)XnkYkT_{k+1} = \binom{n}{k} X^{n-k} Y^k.

In the given problem, we have the expansion of (a+2x)n(a+2x)^n. Here, X=aX = a and Y=2xY = 2x. We need to find the rthr^{th} term, which means TrT_r. To find TrT_r, we set k+1=rk+1 = r, which implies k=r1k = r-1.

Substitute k=r1k = r-1, X=aX = a, and Y=2xY = 2x into the general term formula: Tr=(nr1)an(r1)(2x)r1T_r = \binom{n}{r-1} a^{n-(r-1)} (2x)^{r-1} Tr=(nr1)anr+1(2x)r1T_r = \binom{n}{r-1} a^{n-r+1} (2x)^{r-1}

Now, let's express the binomial coefficient (nr1)\binom{n}{r-1} in expanded form: (nr1)=n!(r1)!(n(r1))!=n!(r1)!(nr+1)!\binom{n}{r-1} = \frac{n!}{(r-1)!(n-(r-1))!} = \frac{n!}{(r-1)!(n-r+1)!}

To match the form presented in the options, we can write n!n! as a product of terms: n!=n×(n1)×(n2)××(nr+2)×(nr+1)!n! = n \times (n-1) \times (n-2) \times \dots \times (n-r+2) \times (n-r+1)!

Substitute this back into the expression for (nr1)\binom{n}{r-1}: (nr1)=n(n1)(n2)(nr+2)(nr+1)!(r1)!(nr+1)!\binom{n}{r-1} = \frac{n(n-1)(n-2)\dots(n-r+2)(n-r+1)!}{(r-1)!(n-r+1)!} (nr1)=n(n1)(n2)(nr+2)(r1)!\binom{n}{r-1} = \frac{n(n-1)(n-2)\dots(n-r+2)}{(r-1)!}

Finally, substitute this back into the expression for TrT_r: Tr=n(n1)(n2)(nr+2)(r1)!anr+1(2x)r1T_r = \frac{n(n-1)(n-2)\dots(n-r+2)}{(r-1)!} a^{n-r+1} (2x)^{r-1}

Comparing this result with the given options, we find that it matches the fourth option.