Solveeit Logo

Question

Mathematics Question on argand plane

Suppose z=x+iyz = x + iy where xx and yy are real numbers and i=1i = \sqrt{-1}. The points (x,y)(x, y) for which z1zi\frac{z - 1}{z - i} is real, lie on

A

an ellipse

B

a circle

C

a parabola

D

a straight line

Answer

a straight line

Explanation

Solution

Given, z=x+iyz=x+i y
Now, z1zi=(x+iy)1(x+iy)i\frac{z-1}{z-i}=\frac{(x+i y)-1}{(x+i y)-i}
=(x1)+iyx+i(y1)×xi(y1)xi(y1)=\frac{(x-1)+i y}{x+i(y-1)} \times \frac{x-i(y-1)}{x-i(y-1)}
=x(x1)+ixyi(x1)(y1)+y(y1)x2+(y1)2=\frac{x(x-1)+i x y-i(x-1)(y-1)+y(y-1)}{x^{2}+(y-1)^{2}}
=(x2+y2xy)+i(xyxy+y+x1)(x2+y2+t2y)=\frac{\left(x^{2}+y^{2}-x-y\right)+i(x y-x y+y+x-1)}{\left(x^{2}+y^{2}+t^{-2 y}\right)}
=(x2+y2xyx2+y22y+1)+i(x+y1x2+y22y+1)(1)=\left(\frac{x^{2}+y^{2}-x-y}{x^{2}+y^{2}-2 y+1}\right)+i\left(\frac{x+y-1}{x^{2}+y^{2}-2 y+1}\right) \ldots(1)
Given, z1zi\frac{z-1}{z-i} is real.
So, its imaginary part should be zero. i.e.,
x+y1x2+y22y+1=0\frac{x+y-1}{x^{2}+y^{2}-2 y+1}=0
x+y=1\Rightarrow x+y=1
(x2+y22y+10)\left(\because x^{2}+y^{2}-2 y+1 \neq 0\right)