Solveeit Logo

Question

Mathematics Question on Differential equations

Suppose y = y(x) be the solution curve to the differential equation
dydxy=2ex\frac{dy}{dx}−y=2−e^{−x} such that limxy(x)\lim_{{x \to \infty}}y(x)
is finite. If a and bare respectively the x – and y – intercepts of the tangent to the curve at x = 0, then the value of a – 4b is equal to _____.

Answer

The correct answer is 3
If =ex= e^{−x}
yex=2ex+e2x2+Cy⋅e^{−x} =−2e^{−x}+\frac{e^{−2x}}{2}+C
y=2+ex+Cex⇒y=−2+e^{−x}+Ce^x
limx\lim_{{x \to \infty}} y(x)is finite so C=0
y = –2 + ex
dydx=ex⇒\frac{dy}{dx}=−e^{−x}
dydx=1⇒\frac{dy}{dx}| =−1
Equation of tangent
y + 1 = –1 (x – 0)
or y + x = –1
So a = –1, b = –1
a –4 b = 3