Solveeit Logo

Question

Mathematics Question on Probability

Suppose X has a binomial distribution B(6,12).\bigg(6,\frac{1}{2}\bigg).Show that X=3 is the most likely outcome.

Answer

B(6,12)\bigg(6, \frac{1}{2}\bigg)\Rightarrow n=6, p=12\frac{1}{2},q=12\frac{1}{2}
xt=0,1,2,3,4,5,6

P(X=r)=C(n,r)prqnrp^rq^{n-r}

Since p=q

Therefore,P(X=r)=C(n,r)pnp^n

Now,out of C(6,0),C(6,1),C(6,2),C(6,3),C(6,4),C(6,5),C(6,6),here C(6,3)is maximum.

∴ P(X=3)=C(6,3)(12)6=654123(12)6=20164=516\bigg(\frac{1}{2}\bigg)^6=\frac{6*5*4}{1*2*3}\bigg(\frac{1}{2}\bigg)^6=20*\frac{1}{64}=\frac{5}{16}

Therefore,P(X=3)is maximum i.e., 516\frac{5}{16}