Question
Quantitative Aptitude Question on Arithmetic Progression
Suppose x1,x2,x3,…,x100 are in arithmetic progression such that x5=−4 and 2x6+2x9=x11+x13. Then, x100 equals ?
A
206
B
-196
C
204
D
-194
Answer
-194
Explanation
Solution
Let the first term of the arithmetic progression be a and the common difference be d.
Thus:
Xn=a+(n−1)d
From the given conditions:
- X5=a+4d=−4
- 2X6+2X9=X11+X13
Using the formula for terms:
- X6=a+5d - X9=a+8d - X11=a+10d - X13=a+12d
Substitute into the equation:
2(a+5d)+2(a+8d)=(a+10d)+(a+12d)
Simplifying:
2a+10d+2a+16d=2a+22d
4a+26d=2a+22d
2a+4d=0⟹a=−2d
Substitute a=−2d into X5=−4:
−2d+4d=−4⟹2d=−4⟹d=−2
Now, find X100:
X100=a+99d=−2(−2)+99(−2)=4−198=−194