Question
Mathematics Question on Trigonometry
Suppose θ∈[0,4π] is a solution of 4cosθ−3sinθ=1. Then cosθ is equal to:
A
36−24
B
36−26−6
C
36+26+6
D
36+24
Answer
36−24
Explanation
Solution
Let 4(1+tan22θ1−tan22θ)−3(1+tan22θ2tan2θ)=1 Let tan2θ=t, we have
1+t24−4t2−6t=1 Multiplying both sides by 1+t2, we get: 4−4t2−6t=1+t2 Rearranging terms: 5t2+6t−3=0
Solving this quadratic equation using the quadratic formula: t=2×5−6±36−4×5×(−3) t=10−6±96 t=10−6±46 t=5−3±26
Next, we find cosθ: cosθ=1+t21−t2 Substituting t=5−3+26, cosθ=1+(5−3+26)21−(5−3+26)2
Calculating further, =1+25(24+9−126)1−25(24+9−126) =2525+(33−126)2525−(33−126) =25+33−12625−33+126 =58−126−8+126 =4−664−66
=25(4−66)−200 =4−66−8 =36−24